Exploring genomic feature selection: A comparative analysis of GWAS and machine learning algorithms in a large-scale soybean dataset

The surge in high-throughput technologies has empowered the acquisition of vast genomic datasets, prompting the search for genetic markers and biomarkers relevant to complex traits. However, grappling with the inherent complexities of high dimensionality and sparsity within these datasets poses form...

Full description

Saved in:
Bibliographic Details
Published inThe plant genome p. e20503
Main Authors Al-Mamun, Hawlader A, Danilevicz, Monica F, Marsh, Jacob I, Gondro, Cedric, Edwards, David
Format Journal Article
LanguageEnglish
Published United States 10.09.2024
Online AccessGet full text

Cover

Loading…
More Information
Summary:The surge in high-throughput technologies has empowered the acquisition of vast genomic datasets, prompting the search for genetic markers and biomarkers relevant to complex traits. However, grappling with the inherent complexities of high dimensionality and sparsity within these datasets poses formidable hurdles. The immense number of features and their potential redundancy demand efficient strategies for extracting pertinent information and identifying significant markers. Feature selection is important in large genomic data as it helps in enhancing interpretability and computational efficiency. This study focuses on addressing these challenges through a comprehensive investigation into genomic feature selection methodologies, employing a rich soybean (Glycine max L. Merr.) dataset comprising 966 lines with over 5.5 million single nucleotide polymorphisms. Emphasizing the "small n large p" dilemma prevalent in contemporary genomic studies, we compared the efficacy of traditional genome-wide association studies (GWAS) with two prominent machine learning tools, random forest and extreme gradient boosting, in pinpointing predictive features. Utilizing the expansive soybean dataset, we assessed the performance of these methodologies in selecting features that optimize predictive modeling for various phenotypes. By constructing predictive models based on the selected features, we ascertain the comparative prediction accuracies, thereby illuminating the strengths and limitations of these feature selection methodologies in the realm of genomic data analysis.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1940-3372
1940-3372
DOI:10.1002/tpg2.20503