High-performance scanning-mode polarization based computational ghost imaging (SPCGI)

Computational ghost imaging (CGI) uses preset patterns and single-pixel detection, breaking through the traditional form of point-to-point imaging. In this paper, based on the Monte Carlo model, a reflective polarization based CGI (PCGI) system has been proposed and constructed under the foggy envir...

Full description

Saved in:
Bibliographic Details
Published inOptics express Vol. 30; no. 11; pp. 17909 - 17921
Main Authors Li, Dekui, Xu, Chenxiang, Yan, Lusha, Guo, Zhongyi
Format Journal Article
LanguageEnglish
Published 23.05.2022
Online AccessGet full text

Cover

Loading…
More Information
Summary:Computational ghost imaging (CGI) uses preset patterns and single-pixel detection, breaking through the traditional form of point-to-point imaging. In this paper, based on the Monte Carlo model, a reflective polarization based CGI (PCGI) system has been proposed and constructed under the foggy environments. And the imaging performances of the PCGI at different optical distances have been investigated and analyzed quantitatively. When the targets and the background have a small difference in reflectivity, the difference of polarization characteristics between the targets and the background can help the CGI to remove the interference of scattering light and improve the imaging contrast. Besides, in order to further improve imaging efficiency, a scanning-mode polarization based CGI (SPCGI) has also been proposed, in which the combination of polarization characteristics and the scanning-mode plays an important role to improve the CGI’s imaging efficiency and imaging quality.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1094-4087
1094-4087
DOI:10.1364/OE.458487