Acid hydrolysis of glycosidic bonds in oat β‐glucan and development of a structured kinetic model

Homogeneous acid‐catalyzed hydrolysis of oat β‐glucan, which contains β‐(1,4) and β‐(1,3) glycosidic bonds in a nonrandom order, was studied at 353 K using HCl and H2SO4. A new structured kinetic model was developed that takes into account the difference in the reactivity of β‐(1,4) and β‐(1,3) glyc...

Full description

Saved in:
Bibliographic Details
Published inAIChE journal Vol. 64; no. 7; pp. 2570 - 2580
Main Authors Nguyen, Hoang S. H., Heinonen, Jari, Sainio, Tuomo
Format Journal Article
LanguageEnglish
Published New York American Institute of Chemical Engineers 01.07.2018
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Homogeneous acid‐catalyzed hydrolysis of oat β‐glucan, which contains β‐(1,4) and β‐(1,3) glycosidic bonds in a nonrandom order, was studied at 353 K using HCl and H2SO4. A new structured kinetic model was developed that takes into account the difference in the reactivity of β‐(1,4) and β‐(1,3) glycosidic bonds as well as their positions in the polysaccharide chain. To minimize the correlation of adjustable parameters in the new model, the reactivities of these bonds were studied independently (T = 313…363 K; cH+ = 0.1…2 mol/L) using cellobiose and laminaribiose. The difference in kinetic parameters (e.g., T = 338 K: kβ‐(1,4) = 0.693 × 10−3 L/mol/min, kβ‐(1,3) = 1.027 × 10−3 L/mol/min) was found to be statistically significant (P < 0.0001), which emphasizes the need for the structured model for oat β‐glucan hydrolysis. The simulation of β‐glucan hydrolysis with the new model was in good agreement with the experimental data and shows improvement over existing nonstructured models. © 2018 American Institute of Chemical Engineers AIChE J, 64: 2570–2580, 2018
ISSN:0001-1541
1547-5905
DOI:10.1002/aic.16147