Continuous Nonsingular Terminal Sliding Mode Control of DC-DC Boost Converters Subject to Time-Varying Disturbances
DC-DC converters work as one of the crucial components in DC microgrid intergraded power systems. In this brief, the robust output voltage regulation problem of DC-DC boost converter system is addressed by using a continuous nonsingular terminal sliding mode control (CTSMC) technique based on finite...
Saved in:
Published in | IEEE transactions on circuits and systems. II, Express briefs Vol. 67; no. 11; pp. 2552 - 2556 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.11.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | DC-DC converters work as one of the crucial components in DC microgrid intergraded power systems. In this brief, the robust output voltage regulation problem of DC-DC boost converter system is addressed by using a continuous nonsingular terminal sliding mode control (CTSMC) technique based on finite-time disturbance observer. By integrating the disturbance estimations into the controller design, an improved sliding mode control (SMC) approach is developed to achieve better voltage tracking performance. The proposed control method admits the properties of fast transient responses, strong suppression ability against time-varying disturbances and small steady state oscillations of output voltage. Experimental results in the presence of both load variations and supplied voltage fluctuations are provided to validate the effectiveness of the proposed algorithm. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 1549-7747 1558-3791 |
DOI: | 10.1109/TCSII.2019.2955711 |