Possible genetic defects in regulation of glycosaminoglycans in patients with diabetic nephropathy
Possible genetic defects in regulation of glycosaminoglycans in patients with diabetic nephropathy. T Deckert , I M Horowitz , A Kofoed-Enevoldsen , L Kjellén , M Deckert , C Lykkelund and F Burcharth Steno Memorial Hospital, Gentofte, Denmark. Abstract The hypothesis of genetic defects in glycosami...
Saved in:
Published in | Diabetes (New York, N.Y.) Vol. 40; no. 6; pp. 764 - 770 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
American Diabetes Association
01.06.1991
|
Online Access | Get full text |
Cover
Loading…
Summary: | Possible genetic defects in regulation of glycosaminoglycans in patients with diabetic nephropathy.
T Deckert ,
I M Horowitz ,
A Kofoed-Enevoldsen ,
L Kjellén ,
M Deckert ,
C Lykkelund and
F Burcharth
Steno Memorial Hospital, Gentofte, Denmark.
Abstract
The hypothesis of genetic defects in glycosaminoglycan (GAG) regulation among patients with insulin-dependent diabetes mellitus
(IDDM) and nephropathy was assessed by studies in tissue cultures of fibroblasts obtained from 7 patients with normal urinary
albumin excretion, 11 patients with diabetic nephropathy, and 6 nondiabetic control subjects. The incorporation of [2H] glucosamine
and [35S] sulfate into hyaluronic acid (HA), chondroitin sulfate and dermatan sulfate (CS + DS), and heparan sulfate (HS)
was measured in cells, matrix, and medium and related to micrograms of tissue protein. Large interindividual variations were
seen in all three groups, and the incorporation of [3H] glucosamine into HA, CS + DS, and HS and [35S] sulfate into CS + DS
and HS were not significantly different between the three groups. However, the fractional incorporation of [3H]glucosamine
into HS was significantly reduced in diabetic patients with nephropathy compared with control subjects. This was the case
not only when related to the total amount of GAGs (P = 0.014) but also when related to HA (P = 0.014). No significant difference
was seen between control subjects and normoalbuminuric diabetic patients. The degree of N-sulfation of HS was not significantly
different between the experimental groups. The results suggest that patients with diabetic nephropathy may suffer from deficiencies
of coordinate regulation in the biosynthesis of GAG in fibroblasts, which may lead to a reduced density of HS in the extracellular
matrix. If these changes reflect alterations in the biosynthesis of GAG from endothelial, myomedial, and mesangial cells,
this observation may be relevant for the pathogenesis of severe diabetic complications. |
---|---|
ISSN: | 0012-1797 1939-327X 0012-1797 |
DOI: | 10.2337/diabetes.40.6.764 |