Nontrivial evolution and geometric phase for an orbital angular momentum qutrit

Photonic orbital angular momentum (OAM) offers a promising platform for high-dimensional quantum information processing. While geometric phase (GP) is the crucial tool in enabling intrinsically fault-tolerant quantum computation, the measurement of GP using linear optics remains relatively unexplore...

Full description

Saved in:
Bibliographic Details
Published inOptics express Vol. 32; no. 12; pp. 21200 - 21215
Main Authors Tang, Fangqing, Zhang, Dongkai, Chen, Lixiang
Format Journal Article
LanguageEnglish
Published United States 03.06.2024
Online AccessGet full text

Cover

Loading…
More Information
Summary:Photonic orbital angular momentum (OAM) offers a promising platform for high-dimensional quantum information processing. While geometric phase (GP) is the crucial tool in enabling intrinsically fault-tolerant quantum computation, the measurement of GP using linear optics remains relatively unexplored in the OAM state space. Here, we propose an experimental scheme to detect GP shifts resulting from the cyclic evolution of OAM qutrit states. Distinguished with the conventional evolution along cyclic path on the Poincaré sphere (PS), the nontrivial evolution in our theoretical scheme is along a cyclic path residing within the SU(3)/U(2) parameter space. By employing a combination of X-gates, dove prisms, and double cylindrical lenses, we achieve the cyclic evolution and analyse the resultant GP through our designed Sagnac interferometer. Our theoretical study may find potential in high-dimensional quantum computation using twisted photons and in exploring the geometric structure of such optical systems.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1094-4087
1094-4087
DOI:10.1364/OE.525024