Regulation of Major Histocompatibility Complex Class I Gene Expression in Thyroid Cells

The major histocompatibility complex (MHC) class I gene cAMP response element (CRE)-like site, −107 to −100 base pairs, is a critical component of a previously unrecognized silencer, −127 to −90 bp, important for thyrotropin (TSH)/cAMP-mediated repression in thyrocytes. TSH/cAMP induced-silencer act...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of biological chemistry Vol. 272; no. 32; pp. 20096 - 20107
Main Authors Saji, Motoyasu, Shong, Minho, Napolitano, Giorgio, Palmer, Lisa A., Taniguchi, Shin-Ichi, Ohmori, Masayuki, Ohta, Masanori, Suzuki, Koichi, Kirshner, Susan L., Giuliani, Cesidio, Singer, Dinah S., Kohn, Leonard D.
Format Journal Article
LanguageEnglish
Published Elsevier Inc 08.08.1997
American Society for Biochemistry and Molecular Biology
Online AccessGet full text

Cover

Loading…
More Information
Summary:The major histocompatibility complex (MHC) class I gene cAMP response element (CRE)-like site, −107 to −100 base pairs, is a critical component of a previously unrecognized silencer, −127 to −90 bp, important for thyrotropin (TSH)/cAMP-mediated repression in thyrocytes. TSH/cAMP induced-silencer activity is associated with the formation of novel complexes with the 38-base pair silencer, whose appearance requires the CRE and involves ubiquitous and thyroid-specific proteins as follows: the CRE-binding protein, a Y-box protein termed thyrotropin receptor (TSHR) suppressor element protein-1 (TSEP-1); thyroid transcription factor-1 (TTF-1); and Pax-8. TTF-1 is an enhancer of class I promoter activity; Pax-8 and TSEP-1 are suppressors. TSH/cAMP decreases TTF-1 complex formation with the silencer, thereby decreasing maximal class I expression; TSH/cAMP enhance TSEP-1 and Pax-8 complex formation in association with their repressive actions. Oligonucleotides that bind TSEP-1, not Pax-8, prevent formation of the TSH/cAMP-induced complexes associated with TSH-induced class I suppression, i.e. TSEP-1 appears to be the dominant repressor factor associated with TSH/cAMP-decreased class I activity and formation of the novel complexes. TSEP-1, TTF-1, and/or Pax-8 are involved in TSH/cAMP-induced negative regulation of the TSH receptor gene in thyrocytes, suppression of MHC class II, and up-regulation of thyroglobulin. TSH/cAMP coordinate regulation of common transcription factors may, therefore, be the basis for self-tolerance and the absence of autoimmunity in the face of TSHR-mediated increases in gene products that are important for thyroid growth and function but are able to act as autoantigens.
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.272.32.20096