Identification of 5α, 6α-epoxycholesterol as a novel modulator of liver X receptor activity
The liver X receptors (LXRα and LXRβ) are members of the nuclear receptor superfamily that function as key transcriptional regulators of a number of biological processes, including cholesterol homeostasis, lipid metabolism, and keratinocyte differentiation. Natural ligands that activate LXRs include...
Saved in:
Published in | Molecular pharmacology Vol. 78; no. 6; pp. 1046 - 1058 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
01.12.2010
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The liver X receptors (LXRα and LXRβ) are members of the nuclear receptor superfamily that function as key transcriptional regulators of a number of biological processes, including cholesterol homeostasis, lipid metabolism, and keratinocyte differentiation. Natural ligands that activate LXRs include oxysterol derivatives such as 25-hydroxycholesterol, 27-hydroxycholesterol, 22(R)-hydroxycholesterol, 20(S)-hydroxycholesterol, and 24(S),25-epoxycholesterol. Related oxysterols, such as 5α,6α-epoxycholesterol (5,6-EC) are present in a number of foods and have been shown to induce atherosclerosis in animal models. Intriguingly, these oxysterols have also been detected in atherosclerotic plaques. Using a variety of biochemical and cellular assays, we demonstrate that 5,6-EC is the first dietary modulator and an endogenous LXR ligand with cell and gene context-dependent antagonist, agonist, and inverse agonist activities. In a multiplexed LXR-cofactor peptide interaction assay, 5,6-EC induced the recruitment of a number of cofactor peptides onto both LXRα and LXRβ and showed an EC(50) of approximately 2 μM in peptide recruitment. Furthermore, 5,6-EC bound to LXRα in a radiolabeled ligand displacement assay (EC(50) = 76 nM), thus demonstrating it to be one of the most potent natural LXRα ligands known to date. Analysis of endogenous gene expression in various cell-based systems indicated the potential of 5,6-EC to antagonize LXR-mediated gene expression. Furthermore, it also induced the expression of some LXR-responsive genes in keratinocytes. These results clearly demonstrate that 5,6-EC is an LXR modulator that may play a role in the development of lipid disorders, such as atherosclerosis, by antagonizing the agonistic action of endogenous LXR ligands. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0026-895X 1521-0111 |
DOI: | 10.1124/mol.110.065193 |