Power Losses Reduction of T-Type Grid-Connected Converters Based on Tolerant Sequential Model Predictive Control

Three-level T-type converters (3LT 2 C) with inductance-capacitance-inductance filters have high power quality of grid current, particularly in the low-voltage system. However, the switching loss and conduction losses degrade the overall efficiency of 3LT 2 C. The generated heat due to the losses en...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on power electronics Vol. 37; no. 8; pp. 9089 - 9103
Main Authors Long, Bo, Shen, Dawei, Cao, Tianxu, Rodriguez, Jose, Garcia, Cristian, Guerrero, Josep M., To Chong, Kil
Format Journal Article
LanguageEnglish
Published New York IEEE 01.08.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Three-level T-type converters (3LT 2 C) with inductance-capacitance-inductance filters have high power quality of grid current, particularly in the low-voltage system. However, the switching loss and conduction losses degrade the overall efficiency of 3LT 2 C. The generated heat due to the losses endangers the reliability of the device and shortens its service life. To relieve the power losses as well as maintain high-quality current output, a low-loss-tolerant sequential model predictive control (LL-TSMPC) is proposed. First, based on the energy loss analysis under switching transitions per commutation, the prediction models of both switching loss and conduction loss are established. Second, the total loss reduction is considered as one control objective in LL-TSMPC. Finally, because multiobjective model predictive control (MPC) requires selecting appropriate weighting factors, complicating the design to solve this problem, TSMPC-based lexicographic optimization is introduced to eliminate the tradeoff factors and simplify the MPC controller design. The proposed method is tested on the hardware platform with the rated power of a 10-kW prototype. The experimental results show that the LL-TSMPC method can effectively reduce the switching losses while maintaining the high power quality of the grid current.
ISSN:0885-8993
1941-0107
DOI:10.1109/TPEL.2022.3157341