Sharp Remez-Type Inequalities Estimating the Lq-Norm of a Function Via Its Lp-Norm
For any q ≥ p > 0 , 𝛼 = ( r + 1 /q ) / ( r + 1 /p ) , f p ∈ [0 , ∞] , and β ∈ [0 , 2𝜋) , we prove a sharp Remez-type inequality x q ≤ φ r + c q φ r + c L p 0 2 π / B y β α x r L p 0 2 π / B α x r ∞ 1 − α for 2𝜋-periodic functions x ∈ L r ∞ , which have zeros and satisfy the condition x + p x − p...
Saved in:
Published in | Ukrainian mathematical journal Vol. 74; no. 5; pp. 726 - 742 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.10.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | For any
q ≥ p >
0
,
𝛼 = (
r
+ 1
/q
)
/
(
r
+ 1
/p
)
, f
p
∈ [0
,
∞]
,
and
β
∈ [0
,
2𝜋)
,
we prove a sharp Remez-type inequality
x
q
≤
φ
r
+
c
q
φ
r
+
c
L
p
0
2
π
/
B
y
β
α
x
r
L
p
0
2
π
/
B
α
x
r
∞
1
−
α
for 2𝜋-periodic functions
x
∈
L
r
∞
,
which have zeros and satisfy the condition
x
+
p
x
−
p
−
1
=
f
p
,
1
where 𝜑
r
is Euler’s perfect spline of order
r,
the number
c
is such that the function
x
= 𝜑
r
+
c
satisfies condition (1),
B
is an arbitrary Lebesgue-measurable set such that
μB
≤
β
φ
r
+
c
p
x
r
∞
x
p
−
1
−
1
/
r
+
1
/
p
,
the set
B
y
(
β
)
is defined by
B
y
(
β
)
:= {
t
∈ [0
,
2𝜋] :
|
𝜑
r
(
t
) +
c| > y
(
β
)}
,
and moreover,
μB
y
(
β
)
=
β.
We also establish sharp Remez-type inequalities of various metrics for trigonometric polynomials and polynomial splines satisfying relation (1). |
---|---|
ISSN: | 0041-5995 1573-9376 |
DOI: | 10.1007/s11253-022-02097-z |