A Recurrent Neural Network Solution for Predicting Driver Intention at Unsignalized Intersections

In this letter, we present a system capable of inferring intent from observed vehicles traversing an unsignalized intersection, a task critical for the safe driving of autonomous vehicles, and beneficial for advanced driver assistance systems. We present a prediction method based on recurrent neural...

Full description

Saved in:
Bibliographic Details
Published inIEEE robotics and automation letters Vol. 3; no. 3; pp. 1759 - 1764
Main Authors Zyner, Alex, Worrall, Stewart, Nebot, Eduardo
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.07.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2377-3766
2377-3766
DOI10.1109/LRA.2018.2805314

Cover

Loading…
Abstract In this letter, we present a system capable of inferring intent from observed vehicles traversing an unsignalized intersection, a task critical for the safe driving of autonomous vehicles, and beneficial for advanced driver assistance systems. We present a prediction method based on recurrent neural networks that takes data from a Lidar-based tracking system similar to those expected in future smart vehicles. The model is validated on a roundabout, a popular style of unsignalized intersection in urban areas. We also present a very large naturalistic dataset recorded in a typical intersection during two days of operation. This comprehensive dataset is used to demonstrate the performance of the algorithm introduced in this letter. The system produces excellent results, giving a significant 1.3-s prediction window before any potential conflict occurs.
AbstractList In this letter, we present a system capable of inferring intent from observed vehicles traversing an unsignalized intersection, a task critical for the safe driving of autonomous vehicles, and beneficial for advanced driver assistance systems. We present a prediction method based on recurrent neural networks that takes data from a Lidar-based tracking system similar to those expected in future smart vehicles. The model is validated on a roundabout, a popular style of unsignalized intersection in urban areas. We also present a very large naturalistic dataset recorded in a typical intersection during two days of operation. This comprehensive dataset is used to demonstrate the performance of the algorithm introduced in this letter. The system produces excellent results, giving a significant 1.3-s prediction window before any potential conflict occurs.
Author Worrall, Stewart
Nebot, Eduardo
Zyner, Alex
Author_xml – sequence: 1
  givenname: Alex
  surname: Zyner
  fullname: Zyner, Alex
  email: a.zyner@acfr.usyd.edu.au
  organization: Australian Centre for Field Robot., Univ. of Sydney, Sydney, NSW, Australia
– sequence: 2
  givenname: Stewart
  surname: Worrall
  fullname: Worrall, Stewart
  email: s.worrall@acfr.usyd.edu.au
  organization: Australian Centre for Field Robot., Univ. of Sydney, Sydney, NSW, Australia
– sequence: 3
  givenname: Eduardo
  surname: Nebot
  fullname: Nebot, Eduardo
  email: e.nebot@acfr.usyd.edu.au
  organization: Australian Centre for Field Robot., Univ. of Sydney, Sydney, NSW, Australia
BookMark eNp9kM1LAzEUxINUsNbeBS8Bz60v2Y9kj6V-FYpKteclzb4tqeumJllF_3p3bRHx4GkezPwewxyTXm1rJOSUwZgxyC7mi8mYA5NjLiGJWHxA-jwSYhSJNO39uo_I0PsNALCEiyhL-kRN6AJ14xzWgd5h41TVSni37pk-2qoJxta0tI4-OCyMDqZe00tn3tDRWR1aqPNVoMvam3WtKvOJxbfjPOrO9CfksFSVx-FeB2R5ffU0vR3N729m08l8pDmkYZRgFEvJhUrjFEQpYsnkSpYxUzHXSoPiMk6wkKA16lUKWVwkrEAhVAFcJCwakPPd362zrw36kG9s49pKPuc8yyLBWNql0l1KO-u9wzLXJqiuaHDKVDmDvFs0bxfNu0Xz_aItCH_ArTMvyn38h5ztEIOIP3HJMxDAoy85t4MB
CODEN IRALC6
CitedBy_id crossref_primary_10_1109_TITS_2018_2867256
crossref_primary_10_1007_s11063_022_10802_z
crossref_primary_10_1109_TITS_2021_3057110
crossref_primary_10_1109_OJITS_2021_3105920
crossref_primary_10_1109_TVT_2019_2903299
crossref_primary_10_1109_TITS_2022_3156011
crossref_primary_10_1109_TITS_2023_3248090
crossref_primary_10_3390_s22041644
crossref_primary_10_1109_TITS_2021_3083927
crossref_primary_10_1109_JAS_2021_1003952
crossref_primary_10_1109_OJITS_2020_2965969
crossref_primary_10_3390_s21123968
crossref_primary_10_1080_19427867_2024_2404358
crossref_primary_10_1109_TVT_2021_3079263
crossref_primary_10_1002_adma_202309708
crossref_primary_10_3390_s24227323
crossref_primary_10_1016_j_isatra_2022_07_004
crossref_primary_10_1016_j_trc_2020_102615
crossref_primary_10_2174_0122127976268634230929182355
crossref_primary_10_1109_ACCESS_2022_3207759
crossref_primary_10_1186_s10033_021_00639_3
crossref_primary_10_1109_TITS_2021_3076164
crossref_primary_10_1016_j_aei_2024_102529
crossref_primary_10_1016_j_eng_2018_07_018
crossref_primary_10_1109_TITS_2023_3304972
crossref_primary_10_3390_electronics11233857
crossref_primary_10_3390_app132413192
crossref_primary_10_1016_j_ymssp_2023_110854
crossref_primary_10_12677_ORF_2024_141075
crossref_primary_10_1016_j_vehcom_2024_100733
crossref_primary_10_1109_TIE_2021_3066943
crossref_primary_10_1016_j_geits_2023_100103
crossref_primary_10_1109_TITS_2022_3155749
crossref_primary_10_1007_s13177_024_00447_8
crossref_primary_10_1016_j_comcom_2023_10_016
crossref_primary_10_1016_j_compenvurbsys_2021_101725
crossref_primary_10_1016_j_jpdc_2021_02_008
crossref_primary_10_1109_TITS_2022_3164450
crossref_primary_10_1109_TITS_2023_3267150
crossref_primary_10_1093_tse_tdad031
crossref_primary_10_1016_j_future_2022_07_003
crossref_primary_10_1109_TITS_2022_3207347
crossref_primary_10_1016_j_ast_2022_108005
crossref_primary_10_1109_TSMC_2020_3040262
crossref_primary_10_1109_LRA_2020_3038377
crossref_primary_10_1080_15389588_2024_2443008
crossref_primary_10_53941_ijamm0101004
crossref_primary_10_1093_tse_tdae005
crossref_primary_10_3390_jmse12020323
crossref_primary_10_1177_09544070241264881
crossref_primary_10_1109_TNSE_2024_3486539
crossref_primary_10_1111_mice_13301
crossref_primary_10_1109_TITS_2021_3095053
crossref_primary_10_3390_su16198417
crossref_primary_10_1109_TITS_2022_3160648
crossref_primary_10_3390_s20174887
crossref_primary_10_1108_IR_06_2020_0114
crossref_primary_10_1109_TITS_2019_2913166
crossref_primary_10_1109_LRA_2018_2886407
crossref_primary_10_1177_15553434231155032
crossref_primary_10_3390_app112411611
crossref_primary_10_1007_s40747_022_00945_w
crossref_primary_10_3389_fpubh_2022_813859
crossref_primary_10_1109_TIV_2019_2955897
crossref_primary_10_1016_j_engappai_2022_104990
crossref_primary_10_1109_TIM_2023_3307179
crossref_primary_10_1109_TITS_2019_2955721
crossref_primary_10_1177_09544070241302194
crossref_primary_10_3390_su16104079
crossref_primary_10_1109_TITS_2020_3012034
crossref_primary_10_1109_TIV_2020_3003889
crossref_primary_10_1109_TVT_2021_3049794
crossref_primary_10_1109_TIV_2022_3195635
crossref_primary_10_1145_3688573
crossref_primary_10_1109_TITS_2022_3193682
crossref_primary_10_1109_COMST_2021_3053118
crossref_primary_10_1177_03611981241260698
crossref_primary_10_1109_MITS_2019_2907676
crossref_primary_10_1177_1071181322661305
crossref_primary_10_1016_j_engappai_2024_109574
crossref_primary_10_1109_TIV_2022_3167103
crossref_primary_10_1109_LRA_2020_3004794
crossref_primary_10_3390_make6040136
crossref_primary_10_1016_j_physa_2023_129060
crossref_primary_10_1109_ACCESS_2020_3031674
crossref_primary_10_3390_electronics13132477
crossref_primary_10_3934_era_2023315
crossref_primary_10_1061_JTEPBS_TEENG_8557
crossref_primary_10_1109_ACCESS_2019_2940114
Cites_doi 10.1109/70.768189
10.1109/IVS.2012.6232178
10.1016/j.trd.2013.10.003
10.1109/ITSC.2010.5624969
10.1016/S0921-8890(98)00062-1
10.1109/IVS.2014.6856508
10.1186/s40648-014-0001-z
10.1109/ICVES.2009.5400203
10.1109/IVS.2013.6629564
10.1109/CVPR.2016.110
10.1109/IVS.2017.7995948
10.1109/ICRA.2016.7487478
10.1016/j.cviu.2014.10.003
10.1109/ITSC.2014.6957976
10.1109/IVS.2017.7995919
10.1109/IVS.2017.7995831
10.1109/ITSC.2016.7795922
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/LRA.2018.2805314
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2377-3766
EndPage 1764
ExternalDocumentID 10_1109_LRA_2018_2805314
8290702
Genre orig-research
GrantInformation_xml – fundername: Next Generation Vehicle
– fundername: University of Michigan and Ford Motor Company
– fundername: Australian Research Council Discovery
  grantid: DP160104081
GroupedDBID 0R~
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFS
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
RIA
RIE
AAYXX
CITATION
RIG
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c206t-5e348827a64607f74818b8f41a42cac0a2845ed80ccecb6094d51de77ad027513
IEDL.DBID RIE
ISSN 2377-3766
IngestDate Mon Jun 30 04:07:38 EDT 2025
Thu Apr 24 23:02:21 EDT 2025
Tue Jul 01 03:53:54 EDT 2025
Wed Aug 27 02:48:45 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/Crown.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c206t-5e348827a64607f74818b8f41a42cac0a2845ed80ccecb6094d51de77ad027513
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-7569-2131
PQID 2299371161
PQPubID 4437225
PageCount 6
ParticipantIDs crossref_primary_10_1109_LRA_2018_2805314
proquest_journals_2299371161
ieee_primary_8290702
crossref_citationtrail_10_1109_LRA_2018_2805314
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-07-01
PublicationDateYYYYMMDD 2018-07-01
PublicationDate_xml – month: 07
  year: 2018
  text: 2018-07-01
  day: 01
PublicationDecade 2010
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE robotics and automation letters
PublicationTitleAbbrev LRA
PublicationYear 2018
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
zeiler (ref22) 2012
ref12
ref15
ref14
(ref23) 2015
ref11
ref10
ref2
ref1
ref17
ref16
ref18
mikolov (ref19) 2013
sak (ref20) 0
ref8
ref7
ref9
zaremba (ref21) 2014
ref4
ref6
ref5
wilke (ref3) 2014
References_xml – ident: ref2
  doi: 10.1109/70.768189
– ident: ref14
  doi: 10.1109/IVS.2012.6232178
– year: 2014
  ident: ref3
  article-title: Assessment of the effectiveness of on-road bicycle lanes at roundabouts in Australia and New Zealand
– year: 2014
  ident: ref21
  article-title: Recurrent neural network regularization
– ident: ref8
  doi: 10.1016/j.trd.2013.10.003
– ident: ref15
  doi: 10.1109/ITSC.2010.5624969
– ident: ref1
  doi: 10.1016/S0921-8890(98)00062-1
– ident: ref5
  doi: 10.1109/IVS.2014.6856508
– start-page: 338
  year: 0
  ident: ref20
  article-title: Long short-term memory recurrent neural network architectures for large scale acoustic modeling
  publication-title: Proc INTERSPEECH
– ident: ref17
  doi: 10.1186/s40648-014-0001-z
– year: 2015
  ident: ref23
  article-title: TensorFlow: Large-scale machine learning on heterogeneous systems
– ident: ref4
  doi: 10.1109/ICVES.2009.5400203
– year: 2012
  ident: ref22
  article-title: Adadelta: An adaptive learning rate method
– ident: ref7
  doi: 10.1109/IVS.2013.6629564
– ident: ref18
  doi: 10.1109/CVPR.2016.110
– year: 2013
  ident: ref19
  article-title: Efficient estimation of word representations in vector space
– ident: ref13
  doi: 10.1109/IVS.2017.7995948
– ident: ref11
  doi: 10.1109/ICRA.2016.7487478
– ident: ref10
  doi: 10.1016/j.cviu.2014.10.003
– ident: ref12
  doi: 10.1109/ITSC.2014.6957976
– ident: ref6
  doi: 10.1109/IVS.2017.7995919
– ident: ref9
  doi: 10.1109/IVS.2017.7995831
– ident: ref16
  doi: 10.1109/ITSC.2016.7795922
SSID ssj0001527395
Score 2.4701385
Snippet In this letter, we present a system capable of inferring intent from observed vehicles traversing an unsignalized intersection, a task critical for the safe...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1759
SubjectTerms Advanced driver assistance systems
Algorithms
Automobiles
Datasets
deep learning in robotics and automation
Driver behavior
Drivers
Intelligent transportation systems
Intelligent vehicles
Laser radar
Neural networks
Predictions
Recurrent neural networks
Roads
Roundabouts
Sensors
Task analysis
Tracking systems
Traffic intersections
Urban areas
Title A Recurrent Neural Network Solution for Predicting Driver Intention at Unsignalized Intersections
URI https://ieeexplore.ieee.org/document/8290702
https://www.proquest.com/docview/2299371161
Volume 3
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED61nWDgVRCFgjywIJHWSZzXWEGrCtEKVVTqFjm2s4BSlKZLB347PicpTyG2SLYjK3fOfb77_BngymWJXjU8slxFpaWdwrd44kkrTLlUOp66lOIB58nUH8_Z_cJbNOBmexZGKWXIZ6qHj6aWL5dijamyPhb9AlSObOqNW3lW6yOfgkpikVdXImnUf5gNkLoV9pwQPY19iTzmKpUf_18TVEb7MKmnU3JJnnvrIumJzTelxv_O9wD2KnRJBqU7HEJDZUew-0lzsA18QGaYY0dVJoLSHLr_tOSCkzpHRjSSJY851nCQFU3ucmRvEEN3N-28IPMMqR8axW-UNC35yrC6stUxzEfDp9uxVd2zYAmH-oXlKVcvYyfgPvNpkAZMB_EkTJnNmSO4oFyHME_JkAqhROLrDaH0bKmCgEssetruCbSyZaZOgYjQ1RCJh6mT-Exym9teoCFWJJlSDpVpB_q1DWJRiZDjXRgvsdmM0CjWVovRanFltQ5cb0e8lgIcf_RtoxG2_arv34Fubea4WqGr2HEQmdka8J79PuocdvDdJTW3C60iX6sLDUCK5BKak7fhpfG_d1M52oU
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED5VZQAGXgVRKOCBBYm0TuK8xoqHCrQVqlqpW-TYzgJKUZsu_fX4nKQ8hdgi2Vas3Dn3-e7zZ4BLlyV61fDIchWVlnYK3-KJJ60w5VLpeOpSigecB0O_N2GPU29ag-v1WRillCGfqTY-mlq-nIklpso6WPQLUDlyQ8d9zy5Oa31kVFBLLPKqWiSNOv1RF8lbYdsJ0dfYl9hjLlP58Qc2YeV-FwbVhAo2yUt7mSdtsfqm1fjfGe_BTokvSbdwiH2oqewAtj-pDjaAd8kIs-yoy0RQnEP3HxZscFJlyYjGsuR5jlUc5EWT2znyN4ghvJt2npNJhuQPjeNXSpqW-cLwurLFIUzu78Y3Pau8acESDvVzy1OuXshOwH3m0yANmA7jSZgymzNHcEG5DmKekiEVQonE11tC6dlSBQGXWPa03SOoZ7NMHQMRoatBEg9TJ_GZ5Da3vUCDrEgypRwq0yZ0KhvEopQhx9swXmOzHaFRrK0Wo9Xi0mpNuFqPeCskOP7o20AjrPuV378JrcrMcblGF7HjIDazNeQ9-X3UBWz2xoN-3H8YPp3CFr6nIOq2oJ7Pl-pMw5E8OTde-A602dyd
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Recurrent+Neural+Network+Solution+for+Predicting+Driver+Intention+at+Unsignalized+Intersections&rft.jtitle=IEEE+robotics+and+automation+letters&rft.au=Zyner%2C+Alex&rft.au=Worrall%2C+Stewart&rft.au=Nebot%2C+Eduardo&rft.date=2018-07-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.eissn=2377-3766&rft.volume=3&rft.issue=3&rft.spage=1759&rft_id=info:doi/10.1109%2FLRA.2018.2805314&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2377-3766&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2377-3766&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2377-3766&client=summon