A Recurrent Neural Network Solution for Predicting Driver Intention at Unsignalized Intersections
In this letter, we present a system capable of inferring intent from observed vehicles traversing an unsignalized intersection, a task critical for the safe driving of autonomous vehicles, and beneficial for advanced driver assistance systems. We present a prediction method based on recurrent neural...
Saved in:
Published in | IEEE robotics and automation letters Vol. 3; no. 3; pp. 1759 - 1764 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
01.07.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 2377-3766 2377-3766 |
DOI | 10.1109/LRA.2018.2805314 |
Cover
Loading…
Abstract | In this letter, we present a system capable of inferring intent from observed vehicles traversing an unsignalized intersection, a task critical for the safe driving of autonomous vehicles, and beneficial for advanced driver assistance systems. We present a prediction method based on recurrent neural networks that takes data from a Lidar-based tracking system similar to those expected in future smart vehicles. The model is validated on a roundabout, a popular style of unsignalized intersection in urban areas. We also present a very large naturalistic dataset recorded in a typical intersection during two days of operation. This comprehensive dataset is used to demonstrate the performance of the algorithm introduced in this letter. The system produces excellent results, giving a significant 1.3-s prediction window before any potential conflict occurs. |
---|---|
AbstractList | In this letter, we present a system capable of inferring intent from observed vehicles traversing an unsignalized intersection, a task critical for the safe driving of autonomous vehicles, and beneficial for advanced driver assistance systems. We present a prediction method based on recurrent neural networks that takes data from a Lidar-based tracking system similar to those expected in future smart vehicles. The model is validated on a roundabout, a popular style of unsignalized intersection in urban areas. We also present a very large naturalistic dataset recorded in a typical intersection during two days of operation. This comprehensive dataset is used to demonstrate the performance of the algorithm introduced in this letter. The system produces excellent results, giving a significant 1.3-s prediction window before any potential conflict occurs. |
Author | Worrall, Stewart Nebot, Eduardo Zyner, Alex |
Author_xml | – sequence: 1 givenname: Alex surname: Zyner fullname: Zyner, Alex email: a.zyner@acfr.usyd.edu.au organization: Australian Centre for Field Robot., Univ. of Sydney, Sydney, NSW, Australia – sequence: 2 givenname: Stewart surname: Worrall fullname: Worrall, Stewart email: s.worrall@acfr.usyd.edu.au organization: Australian Centre for Field Robot., Univ. of Sydney, Sydney, NSW, Australia – sequence: 3 givenname: Eduardo surname: Nebot fullname: Nebot, Eduardo email: e.nebot@acfr.usyd.edu.au organization: Australian Centre for Field Robot., Univ. of Sydney, Sydney, NSW, Australia |
BookMark | eNp9kM1LAzEUxINUsNbeBS8Bz60v2Y9kj6V-FYpKteclzb4tqeumJllF_3p3bRHx4GkezPwewxyTXm1rJOSUwZgxyC7mi8mYA5NjLiGJWHxA-jwSYhSJNO39uo_I0PsNALCEiyhL-kRN6AJ14xzWgd5h41TVSni37pk-2qoJxta0tI4-OCyMDqZe00tn3tDRWR1aqPNVoMvam3WtKvOJxbfjPOrO9CfksFSVx-FeB2R5ffU0vR3N729m08l8pDmkYZRgFEvJhUrjFEQpYsnkSpYxUzHXSoPiMk6wkKA16lUKWVwkrEAhVAFcJCwakPPd362zrw36kG9s49pKPuc8yyLBWNql0l1KO-u9wzLXJqiuaHDKVDmDvFs0bxfNu0Xz_aItCH_ArTMvyn38h5ztEIOIP3HJMxDAoy85t4MB |
CODEN | IRALC6 |
CitedBy_id | crossref_primary_10_1109_TITS_2018_2867256 crossref_primary_10_1007_s11063_022_10802_z crossref_primary_10_1109_TITS_2021_3057110 crossref_primary_10_1109_OJITS_2021_3105920 crossref_primary_10_1109_TVT_2019_2903299 crossref_primary_10_1109_TITS_2022_3156011 crossref_primary_10_1109_TITS_2023_3248090 crossref_primary_10_3390_s22041644 crossref_primary_10_1109_TITS_2021_3083927 crossref_primary_10_1109_JAS_2021_1003952 crossref_primary_10_1109_OJITS_2020_2965969 crossref_primary_10_3390_s21123968 crossref_primary_10_1080_19427867_2024_2404358 crossref_primary_10_1109_TVT_2021_3079263 crossref_primary_10_1002_adma_202309708 crossref_primary_10_3390_s24227323 crossref_primary_10_1016_j_isatra_2022_07_004 crossref_primary_10_1016_j_trc_2020_102615 crossref_primary_10_2174_0122127976268634230929182355 crossref_primary_10_1109_ACCESS_2022_3207759 crossref_primary_10_1186_s10033_021_00639_3 crossref_primary_10_1109_TITS_2021_3076164 crossref_primary_10_1016_j_aei_2024_102529 crossref_primary_10_1016_j_eng_2018_07_018 crossref_primary_10_1109_TITS_2023_3304972 crossref_primary_10_3390_electronics11233857 crossref_primary_10_3390_app132413192 crossref_primary_10_1016_j_ymssp_2023_110854 crossref_primary_10_12677_ORF_2024_141075 crossref_primary_10_1016_j_vehcom_2024_100733 crossref_primary_10_1109_TIE_2021_3066943 crossref_primary_10_1016_j_geits_2023_100103 crossref_primary_10_1109_TITS_2022_3155749 crossref_primary_10_1007_s13177_024_00447_8 crossref_primary_10_1016_j_comcom_2023_10_016 crossref_primary_10_1016_j_compenvurbsys_2021_101725 crossref_primary_10_1016_j_jpdc_2021_02_008 crossref_primary_10_1109_TITS_2022_3164450 crossref_primary_10_1109_TITS_2023_3267150 crossref_primary_10_1093_tse_tdad031 crossref_primary_10_1016_j_future_2022_07_003 crossref_primary_10_1109_TITS_2022_3207347 crossref_primary_10_1016_j_ast_2022_108005 crossref_primary_10_1109_TSMC_2020_3040262 crossref_primary_10_1109_LRA_2020_3038377 crossref_primary_10_1080_15389588_2024_2443008 crossref_primary_10_53941_ijamm0101004 crossref_primary_10_1093_tse_tdae005 crossref_primary_10_3390_jmse12020323 crossref_primary_10_1177_09544070241264881 crossref_primary_10_1109_TNSE_2024_3486539 crossref_primary_10_1111_mice_13301 crossref_primary_10_1109_TITS_2021_3095053 crossref_primary_10_3390_su16198417 crossref_primary_10_1109_TITS_2022_3160648 crossref_primary_10_3390_s20174887 crossref_primary_10_1108_IR_06_2020_0114 crossref_primary_10_1109_TITS_2019_2913166 crossref_primary_10_1109_LRA_2018_2886407 crossref_primary_10_1177_15553434231155032 crossref_primary_10_3390_app112411611 crossref_primary_10_1007_s40747_022_00945_w crossref_primary_10_3389_fpubh_2022_813859 crossref_primary_10_1109_TIV_2019_2955897 crossref_primary_10_1016_j_engappai_2022_104990 crossref_primary_10_1109_TIM_2023_3307179 crossref_primary_10_1109_TITS_2019_2955721 crossref_primary_10_1177_09544070241302194 crossref_primary_10_3390_su16104079 crossref_primary_10_1109_TITS_2020_3012034 crossref_primary_10_1109_TIV_2020_3003889 crossref_primary_10_1109_TVT_2021_3049794 crossref_primary_10_1109_TIV_2022_3195635 crossref_primary_10_1145_3688573 crossref_primary_10_1109_TITS_2022_3193682 crossref_primary_10_1109_COMST_2021_3053118 crossref_primary_10_1177_03611981241260698 crossref_primary_10_1109_MITS_2019_2907676 crossref_primary_10_1177_1071181322661305 crossref_primary_10_1016_j_engappai_2024_109574 crossref_primary_10_1109_TIV_2022_3167103 crossref_primary_10_1109_LRA_2020_3004794 crossref_primary_10_3390_make6040136 crossref_primary_10_1016_j_physa_2023_129060 crossref_primary_10_1109_ACCESS_2020_3031674 crossref_primary_10_3390_electronics13132477 crossref_primary_10_3934_era_2023315 crossref_primary_10_1061_JTEPBS_TEENG_8557 crossref_primary_10_1109_ACCESS_2019_2940114 |
Cites_doi | 10.1109/70.768189 10.1109/IVS.2012.6232178 10.1016/j.trd.2013.10.003 10.1109/ITSC.2010.5624969 10.1016/S0921-8890(98)00062-1 10.1109/IVS.2014.6856508 10.1186/s40648-014-0001-z 10.1109/ICVES.2009.5400203 10.1109/IVS.2013.6629564 10.1109/CVPR.2016.110 10.1109/IVS.2017.7995948 10.1109/ICRA.2016.7487478 10.1016/j.cviu.2014.10.003 10.1109/ITSC.2014.6957976 10.1109/IVS.2017.7995919 10.1109/IVS.2017.7995831 10.1109/ITSC.2016.7795922 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
DOI | 10.1109/LRA.2018.2805314 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2377-3766 |
EndPage | 1764 |
ExternalDocumentID | 10_1109_LRA_2018_2805314 8290702 |
Genre | orig-research |
GrantInformation_xml | – fundername: Next Generation Vehicle – fundername: University of Michigan and Ford Motor Company – fundername: Australian Research Council Discovery grantid: DP160104081 |
GroupedDBID | 0R~ 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFS AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD IFIPE IPLJI JAVBF KQ8 M43 M~E O9- OCL RIA RIE AAYXX CITATION RIG 7SC 7SP 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c206t-5e348827a64607f74818b8f41a42cac0a2845ed80ccecb6094d51de77ad027513 |
IEDL.DBID | RIE |
ISSN | 2377-3766 |
IngestDate | Mon Jun 30 04:07:38 EDT 2025 Thu Apr 24 23:02:21 EDT 2025 Tue Jul 01 03:53:54 EDT 2025 Wed Aug 27 02:48:45 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/Crown.html |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c206t-5e348827a64607f74818b8f41a42cac0a2845ed80ccecb6094d51de77ad027513 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-7569-2131 |
PQID | 2299371161 |
PQPubID | 4437225 |
PageCount | 6 |
ParticipantIDs | crossref_primary_10_1109_LRA_2018_2805314 proquest_journals_2299371161 ieee_primary_8290702 crossref_citationtrail_10_1109_LRA_2018_2805314 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-07-01 |
PublicationDateYYYYMMDD | 2018-07-01 |
PublicationDate_xml | – month: 07 year: 2018 text: 2018-07-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE robotics and automation letters |
PublicationTitleAbbrev | LRA |
PublicationYear | 2018 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 zeiler (ref22) 2012 ref12 ref15 ref14 (ref23) 2015 ref11 ref10 ref2 ref1 ref17 ref16 ref18 mikolov (ref19) 2013 sak (ref20) 0 ref8 ref7 ref9 zaremba (ref21) 2014 ref4 ref6 ref5 wilke (ref3) 2014 |
References_xml | – ident: ref2 doi: 10.1109/70.768189 – ident: ref14 doi: 10.1109/IVS.2012.6232178 – year: 2014 ident: ref3 article-title: Assessment of the effectiveness of on-road bicycle lanes at roundabouts in Australia and New Zealand – year: 2014 ident: ref21 article-title: Recurrent neural network regularization – ident: ref8 doi: 10.1016/j.trd.2013.10.003 – ident: ref15 doi: 10.1109/ITSC.2010.5624969 – ident: ref1 doi: 10.1016/S0921-8890(98)00062-1 – ident: ref5 doi: 10.1109/IVS.2014.6856508 – start-page: 338 year: 0 ident: ref20 article-title: Long short-term memory recurrent neural network architectures for large scale acoustic modeling publication-title: Proc INTERSPEECH – ident: ref17 doi: 10.1186/s40648-014-0001-z – year: 2015 ident: ref23 article-title: TensorFlow: Large-scale machine learning on heterogeneous systems – ident: ref4 doi: 10.1109/ICVES.2009.5400203 – year: 2012 ident: ref22 article-title: Adadelta: An adaptive learning rate method – ident: ref7 doi: 10.1109/IVS.2013.6629564 – ident: ref18 doi: 10.1109/CVPR.2016.110 – year: 2013 ident: ref19 article-title: Efficient estimation of word representations in vector space – ident: ref13 doi: 10.1109/IVS.2017.7995948 – ident: ref11 doi: 10.1109/ICRA.2016.7487478 – ident: ref10 doi: 10.1016/j.cviu.2014.10.003 – ident: ref12 doi: 10.1109/ITSC.2014.6957976 – ident: ref6 doi: 10.1109/IVS.2017.7995919 – ident: ref9 doi: 10.1109/IVS.2017.7995831 – ident: ref16 doi: 10.1109/ITSC.2016.7795922 |
SSID | ssj0001527395 |
Score | 2.4701385 |
Snippet | In this letter, we present a system capable of inferring intent from observed vehicles traversing an unsignalized intersection, a task critical for the safe... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1759 |
SubjectTerms | Advanced driver assistance systems Algorithms Automobiles Datasets deep learning in robotics and automation Driver behavior Drivers Intelligent transportation systems Intelligent vehicles Laser radar Neural networks Predictions Recurrent neural networks Roads Roundabouts Sensors Task analysis Tracking systems Traffic intersections Urban areas |
Title | A Recurrent Neural Network Solution for Predicting Driver Intention at Unsignalized Intersections |
URI | https://ieeexplore.ieee.org/document/8290702 https://www.proquest.com/docview/2299371161 |
Volume | 3 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED61nWDgVRCFgjywIJHWSZzXWEGrCtEKVVTqFjm2s4BSlKZLB347PicpTyG2SLYjK3fOfb77_BngymWJXjU8slxFpaWdwrd44kkrTLlUOp66lOIB58nUH8_Z_cJbNOBmexZGKWXIZ6qHj6aWL5dijamyPhb9AlSObOqNW3lW6yOfgkpikVdXImnUf5gNkLoV9pwQPY19iTzmKpUf_18TVEb7MKmnU3JJnnvrIumJzTelxv_O9wD2KnRJBqU7HEJDZUew-0lzsA18QGaYY0dVJoLSHLr_tOSCkzpHRjSSJY851nCQFU3ucmRvEEN3N-28IPMMqR8axW-UNC35yrC6stUxzEfDp9uxVd2zYAmH-oXlKVcvYyfgPvNpkAZMB_EkTJnNmSO4oFyHME_JkAqhROLrDaH0bKmCgEssetruCbSyZaZOgYjQ1RCJh6mT-Exym9teoCFWJJlSDpVpB_q1DWJRiZDjXRgvsdmM0CjWVovRanFltQ5cb0e8lgIcf_RtoxG2_arv34Fubea4WqGr2HEQmdka8J79PuocdvDdJTW3C60iX6sLDUCK5BKak7fhpfG_d1M52oU |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED5VZQAGXgVRKOCBBYm0TuK8xoqHCrQVqlqpW-TYzgJKUZsu_fX4nKQ8hdgi2Vas3Dn3-e7zZ4BLlyV61fDIchWVlnYK3-KJJ60w5VLpeOpSigecB0O_N2GPU29ag-v1WRillCGfqTY-mlq-nIklpso6WPQLUDlyQ8d9zy5Oa31kVFBLLPKqWiSNOv1RF8lbYdsJ0dfYl9hjLlP58Qc2YeV-FwbVhAo2yUt7mSdtsfqm1fjfGe_BTokvSbdwiH2oqewAtj-pDjaAd8kIs-yoy0RQnEP3HxZscFJlyYjGsuR5jlUc5EWT2znyN4ghvJt2npNJhuQPjeNXSpqW-cLwurLFIUzu78Y3Pau8acESDvVzy1OuXshOwH3m0yANmA7jSZgymzNHcEG5DmKekiEVQonE11tC6dlSBQGXWPa03SOoZ7NMHQMRoatBEg9TJ_GZ5Da3vUCDrEgypRwq0yZ0KhvEopQhx9swXmOzHaFRrK0Wo9Xi0mpNuFqPeCskOP7o20AjrPuV378JrcrMcblGF7HjIDazNeQ9-X3UBWz2xoN-3H8YPp3CFr6nIOq2oJ7Pl-pMw5E8OTde-A602dyd |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Recurrent+Neural+Network+Solution+for+Predicting+Driver+Intention+at+Unsignalized+Intersections&rft.jtitle=IEEE+robotics+and+automation+letters&rft.au=Zyner%2C+Alex&rft.au=Worrall%2C+Stewart&rft.au=Nebot%2C+Eduardo&rft.date=2018-07-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.eissn=2377-3766&rft.volume=3&rft.issue=3&rft.spage=1759&rft_id=info:doi/10.1109%2FLRA.2018.2805314&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2377-3766&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2377-3766&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2377-3766&client=summon |