A Recurrent Neural Network Solution for Predicting Driver Intention at Unsignalized Intersections
In this letter, we present a system capable of inferring intent from observed vehicles traversing an unsignalized intersection, a task critical for the safe driving of autonomous vehicles, and beneficial for advanced driver assistance systems. We present a prediction method based on recurrent neural...
Saved in:
Published in | IEEE robotics and automation letters Vol. 3; no. 3; pp. 1759 - 1764 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
01.07.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | In this letter, we present a system capable of inferring intent from observed vehicles traversing an unsignalized intersection, a task critical for the safe driving of autonomous vehicles, and beneficial for advanced driver assistance systems. We present a prediction method based on recurrent neural networks that takes data from a Lidar-based tracking system similar to those expected in future smart vehicles. The model is validated on a roundabout, a popular style of unsignalized intersection in urban areas. We also present a very large naturalistic dataset recorded in a typical intersection during two days of operation. This comprehensive dataset is used to demonstrate the performance of the algorithm introduced in this letter. The system produces excellent results, giving a significant 1.3-s prediction window before any potential conflict occurs. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 2377-3766 2377-3766 |
DOI: | 10.1109/LRA.2018.2805314 |