Techno-Economic Analysis of a 600 MW Oxy-Enrich Pulverized Coal-Fired Boiler

Oxy-fuel combustion is one of the most promising methods for CO2 capture and storage (CCS) but the operating costs—mainly due to the need for oxygen production—usually lead to an obvious decrease in power generation efficiency. An “oxy-enrich combustion” process was proposed in this study to improve...

Full description

Saved in:
Bibliographic Details
Published inEnergies (Basel) Vol. 11; no. 4; p. 768
Main Authors Lei, Ming, Sun, Cen, Wang, Chunbo
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 28.03.2018
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Oxy-fuel combustion is one of the most promising methods for CO2 capture and storage (CCS) but the operating costs—mainly due to the need for oxygen production—usually lead to an obvious decrease in power generation efficiency. An “oxy-enrich combustion” process was proposed in this study to improve the efficiency of the oxy-fuel combustion process. The oxidizer for oxy-enrich combustion was composed of pure oxygen, air and recycled flue gas. Thus, the CO2 concentration in the flue gas decreased to 30–40%. The PSA (pressure swing adsorption), which has been widely used for CO2 removal from the shifting gases of ammonia synthesis in China, was applied to capture CO2 during oxy-enrich combustion. The technological economics of oxy-enrich combustion with PSA was calculated and compared to that of oxy-fuel combustion. The results indicated that, compared with oxy-fuel combustion: (1) the oxy-enrich combustion has fewer capital and operating costs for the ASU (air separation unit) and the recycle fan; (2) there were fewer changes in the components of the flue gas in a furnace for oxy-enrich combustion between dry and wet flue gas circulation; and (3) as the volume ratio of air and oxygen was 2 or 3, the economics of oxy-enrich combustion with PSA were more advantageous.
ISSN:1996-1073
1996-1073
DOI:10.3390/en11040768