Arc erosion resistance of Al2O3–Cu/35Mo composites reinforced by trace graphene oxide

In this study, Al2O3–Cu/35Mo composites were prepared by rapid hot-press sintering-internal oxidation method, and the materials were modified by adding trace amounts of graphene oxide (GO). The results show that the relative densities of the composites are above 99%, the γ-Al2O3 generated by interna...

Full description

Saved in:
Bibliographic Details
Published inJournal of materials research and technology Vol. 30; pp. 9612 - 9624
Main Authors Li, Lihua, Zhang, Jiacan, Zhou, Meng, Tian, Baohong, Zhang, Yi, Jing, Ke, Li, Xu, Guo, Huiwen, Volinsky, Alex A.
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.05.2024
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In this study, Al2O3–Cu/35Mo composites were prepared by rapid hot-press sintering-internal oxidation method, and the materials were modified by adding trace amounts of graphene oxide (GO). The results show that the relative densities of the composites are above 99%, the γ-Al2O3 generated by internal oxidation is diffusely distributed on the copper matrix. The incorporation of GO produced a small number of hard MoC particles at the interface, which facilitated the interfacial bonding of the composites. In the 30 V DC, 10–30 A electrical contact test, the anode mass of the composites increases, while the cathode mass decreases. And GO reduces the total mass loss of the electric contact by 63.6%, 38.9%, 51.3% and 20.9%, respectively. A comparison of the electrical contact properties of the two materials showed that the addition of GO dispersed the concentrated erosion of the arc. At 10 A and 30 A, the arc energy is reduced by 75.5% and 12.5%, respectively. With the gradual increase in electric current, GO makes the Al2O3–Cu/35Mo composites more stable during the electric contact process, improves the anti-welding ability of the contact and reduces contact resistance.
ISSN:2238-7854
DOI:10.1016/j.jmrt.2024.06.046