Successive Years of Rice Straw Return Increased the Rice Yield and Soil Nutrients While Decreasing the Greenhouse Gas Intensity

Straw return has important impacts on black soil protection, food security, and environmental protection. One year of straw return (S1) reduces rice yield and increases greenhouse gas (GHG) emissions. However, the effects of successive years of straw return on rice yield, soil nutrients, and GHG emi...

Full description

Saved in:
Bibliographic Details
Published inPlants (Basel) Vol. 13; no. 17; p. 2446
Main Authors Wu, Meikang, Nuo, Min, Jiang, Zixian, Xu, Ruiyao, Zhang, Hongcheng, Lu, Xiao, Yao, Liqun, Dou, Man, Xing, Xu, Meng, Xin, Wang, Dongchao, Wei, Xiaoshuang, Tian, Ping, Wang, Guan, Wu, Zhihai, Yang, Meiying
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.09.2024
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Straw return has important impacts on black soil protection, food security, and environmental protection. One year of straw return (S1) reduces rice yield and increases greenhouse gas (GHG) emissions. However, the effects of successive years of straw return on rice yield, soil nutrients, and GHG emissions in the northeast rice region are still unclear. Therefore, we conducted four successive years of straw return (S4) in a positional experiment to investigate the effects of different years of straw return on rice yield, soil nutrients, and GHG emissions in the northeast rice region. The experimental treatments included the following: no straw return (S0), a year of straw return (S1), two successive years of straw return (S2), three successive years of straw return (S3), and four successive years of straw return (S4). Compared with S1, the rice yields of S2, S3, and S4 increased by 10.89%, 15.46%, and 16.98%, respectively. But only S4 increased by 4.64% compared to S0, while other treatments were lower than S0. S4 increased panicles per m2 and spikelets per panicle by 9.34% and 8.93%, respectively, compared to S1. Panicles per m2 decreased by 8.06% at S4 compared to S0, while spikelets per panicle increased by 13.23%. Compared with S0, the soil organic carbon, total nitrogen, NH4+-N, NO3−-N, available phosphorus, and available potassium of S4 increased by 11.68%, 10.15%, 24.62%, 21.38%, 12.33%, and 13.35%, respectively. Successive years of rice straw return decreased GHG intensity (GHGI). Compared with S1, the GHGI of S4, S3, and S2 decreased by 16.2%, 11.84%, and 9.36%, respectively. Thus, S4 increased rice yield and soil nutrients, reducing GHGI.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2223-7747
2223-7747
DOI:10.3390/plants13172446