A Tunable and Switchable Multi-Wavelength Erbium-Doped Fiber Ring Laser Enabled by Adjusting the Spectral Fringe Visibility of a Mach-Zehnder Fiber Interferometer
This paper presents a tunable, switchable multi-wavelength emission from an erbium-doped fiber ring laser, enabled by adjusting the spectral fringe visibility of a fiber interferometer filter. The filter is formed with specially designed concatenated tapered fibers to configure a Mach-Zehnder fiber...
Saved in:
Published in | Applied sciences Vol. 14; no. 21; p. 9846 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.11.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | This paper presents a tunable, switchable multi-wavelength emission from an erbium-doped fiber ring laser, enabled by adjusting the spectral fringe visibility of a fiber interferometer filter. The filter is formed with specially designed concatenated tapered fibers to configure a Mach-Zehnder fiber interferometer (MZFI). The laser emission is highly flexible and reconfigurable, allowing for tuning between single- and dual-wavelength operation. The laser can switch sequentially from one up to six wavelengths by fixing the curvature and adjusting the polarization state. The lasing emission is generated over a stable wavelength range between 1559.59 nm and 1563.54 nm, exhibiting an optical signal-to-noise ratio (OSNR) exceeding ~35 dB. The performance of amplitude and wavelength fluctuations were evaluated, indicating an appropriate stability of ~3 dB and a shift less than 0.1 nm within a 45 min period at room temperature. A detailed comparison with the literature is given. |
---|---|
ISSN: | 2076-3417 2076-3417 |
DOI: | 10.3390/app14219846 |