Efficient iterative methods for hyperparameter estimation in large-scale linear inverse problems

We study Bayesian methods for large-scale linear inverse problems, focusing on the challenging task of hyperparameter estimation. Typical hierarchical Bayesian formulations that follow a Markov Chain Monte Carlo approach are possible for small problems but are not computationally feasible for proble...

Full description

Saved in:
Bibliographic Details
Published inAdvances in computational mathematics Vol. 50; no. 6
Main Authors Hall-Hooper, Khalil A., Saibaba, Arvind K., Chung, Julianne, Miller, Scot M.
Format Journal Article
LanguageEnglish
Published New York Springer Nature B.V 01.12.2024
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We study Bayesian methods for large-scale linear inverse problems, focusing on the challenging task of hyperparameter estimation. Typical hierarchical Bayesian formulations that follow a Markov Chain Monte Carlo approach are possible for small problems but are not computationally feasible for problems with a very large number of unknown inverse parameters. In this work, we describe an empirical Bayes (EB) method to estimate hyperparameters that maximize the marginal posterior, i.e., the probability density of the hyperparameters conditioned on the data, and then we use the estimated hyperparameters to compute the posterior of the unknown inverse parameters. For problems where the computation of the square root and inverse of prior covariance matrices are not feasible, we describe an approach based on the generalized Golub-Kahan bidiagonalization to approximate the marginal posterior and seek hyperparameters that minimize the approximate marginal posterior. Numerical results from seismic and atmospheric tomography demonstrate the accuracy, robustness, and potential benefits of the proposed approach.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1019-7168
1572-9044
DOI:10.1007/s10444-024-10208-6