A Standard-Cell-Based Neuro-Inspired Integrate-and-Fire Analog-to-Time Converter for Biological and Low-Frequency Signals - Comparison With Analog Version

Continuous-time asynchronous data converters namely, analog-to-digital converters and analog-to-time converters, can be beneficial for certain types of applications, such as, processing of biological signals with sparse information. A particular case of these converters is the integrate-and-fire con...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on biomedical circuits and systems Vol. 18; no. 4; pp. 861 - 871
Main Authors Teixeira, Miguel Lima, Oliveira, Joao P., Principe, Jose C., Goes, Joao
Format Journal Article
LanguageEnglish
Published United States IEEE 01.08.2024
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Continuous-time asynchronous data converters namely, analog-to-digital converters and analog-to-time converters, can be beneficial for certain types of applications, such as, processing of biological signals with sparse information. A particular case of these converters is the integrate-and-fire converter (IFC) that is inspired by the neural system. If it is possible to develop a standard-cell-based (SCB) IFC circuit to perform well in advanced technology nodes, it will benefit from the simplicity of SCB circuit designs and can be implemented in widely available field-programmable gate arrays (FPGAs). This way, this paper proposes two IFC circuits designed and prototyped in a 130 nm CMOS standard process. The first is a novel SCB open-loop dynamic IFC. The latter, is a closed-loop analog IFC with conventional blocks. This paper presents a through comparison between the two IFC circuits. They have a power dissipation of 59 <inline-formula><tex-math notation="LaTeX">\boldsymbol{\mu}</tex-math></inline-formula>W and 53 <inline-formula><tex-math notation="LaTeX">\boldsymbol{\mu}</tex-math></inline-formula>W, and an energy per pulse of 18 pJ and 1060 pJ, SCB and analog IFC, respectively. The SCB IFC has one of the lowest energy per pulse consumption reported for IFC circuits. The analog IFC, being fully differential, is to our knowledge the first of its kind. Moreover, they do not require an external clock. They can convert signals with a peak-to-peak amplitude from 1.6 mV to 28 mV and 0.6 mV to 2.4 mV, and a frequency range of 2 Hz to 42 kHz and 10 Hz to 4 kHz, SCB and analog IFC, respectively. Presenting low normalized RMS conversion plus reconstruction errors, below 5.2%. The maximum pulse density (average firing-rate) is 3300 kHz, for the SCB and 50 kHz, for the analog IFC.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1932-4545
1940-9990
1940-9990
DOI:10.1109/TBCAS.2024.3422282