Achieving biocompatibility and tailoring mechanical properties of SLA 3D printed devices for microfluidic and cell culture applications

Stereolithography (SLA) and other photopolymerization-based additive manufacturing approaches are becoming popular for the fabrication of microfluidic devices and cell-infused platforms, but many of the resins employed in these techniques are cytotoxic to cells or do not have the appropriate mechani...

Full description

Saved in:
Bibliographic Details
Published inLab on a chip Vol. 24; no. 19; pp. 4632 - 4638
Main Authors Nelson, Matt D, Tresco, Patrick A, Yost, Christian C, Gale, Bruce K
Format Journal Article
LanguageEnglish
Published England Royal Society of Chemistry 24.09.2024
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Stereolithography (SLA) and other photopolymerization-based additive manufacturing approaches are becoming popular for the fabrication of microfluidic devices and cell-infused platforms, but many of the resins employed in these techniques are cytotoxic to cells or do not have the appropriate mechanical properties for microfluidic components. Here, using a commercially available resin, we demonstrate that biocompatibility and a range of mechanical properties can be achieved through post-print optimization involving baking, soaking, network swelling, and UV exposure. We show that UV-vis spectrophotometry can be used to detect methacrylate monomer/oligomer, and utilizing this method, we found that baking at 120 °C for 24 hours was the optimal method for removing cytotoxic chemical species and creating nontoxic cell culture platforms, though UV exposure and soaking in 100% ethanol also can substantially reduce cytotoxicity. Furthermore, we show that the mechanical properties can be modified, including up to 50% for the Young's modulus and an order of magnitude for the flexural modulus, through the post-processing approach employed. Based on the study results, users can choose post-processing approaches to achieve needed cytotoxicity and mechanical profiles, simultaneously.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1473-0197
1473-0189
1473-0189
DOI:10.1039/d4lc00354c