Ferroelectric, flexoelectric and photothermal coupling in PVDF-based composites for flexible photoelectric sensors

A ferroelectric polyvinylidene fluoride (PVDF) film with excellent flexibility possesses great potential for photodetection and wearable devices. However, the relatively weak photo-absorption and the consequent small photocurrent limit its photofunctional properties. Herein, we embedded a strongly v...

Full description

Saved in:
Bibliographic Details
Published inMaterials horizons Vol. 11; no. 21; pp. 5295 - 5303
Main Authors Wang, Lu, Boda, Muzaffar Ahmad, Chen, Chen, He, Xiang, Yi, Zhiguo
Format Journal Article
LanguageEnglish
Published England Royal Society of Chemistry 28.10.2024
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:A ferroelectric polyvinylidene fluoride (PVDF) film with excellent flexibility possesses great potential for photodetection and wearable devices. However, the relatively weak photo-absorption and the consequent small photocurrent limit its photofunctional properties. Herein, we embedded a strongly visible-light active material system, 0.5Ba(Zr Ti Mn )O -0.5(Ba Ca )TiO (BZTM-BCT) loaded with Ag and Au nanoparticles, into a PVDF film, which demonstrates a significantly higher photovoltaic response in the whole visible light range with a β-phase content of over 90%. In a state of "bending + poling", the PVDF/BZTM-BCT:Au film presents an optimal response for photoelectric properties by exhibiting a photocurrent that is 57 times higher than that of a pure PVDF film when illuminated with 405 nm LED light at 100 mW cm . Photoexcitation and thermal excitation jointly contribute to the generation of free carriers, while the flexoelectric and ferroelectric coupling electric field provides a greater driving force for carrier separation and transport. More interestingly, composite film-based photoelectric sensors can simultaneously respond to light and the movement and deformation of contacted things, indicating its potential in versatile applications. Overall, this work puts forward a new route for designing new flexible multifunctional photoelectric devices.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2051-6347
2051-6355
2051-6355
DOI:10.1039/d4mh00667d