Multivariate HPLC system assessment and optimization for traditional Chinese medicine: a case study of Gastrodia elata

The development of HPLC analytical methods for traditional Chinese medicine is intricate and time-consuming, influenced by factors such as column wear, solvent purity, and instrumental settings. A comprehensive evaluation of the HPLC system is crucial to mitigate potential variability and ensure the...

Full description

Saved in:
Bibliographic Details
Published inAnalytical methods Vol. 16; no. 40; pp. 6916 - 6928
Main Authors Xu, Qilin, Huo, Xinyi, Yin, Xianggang, Zhao, XiaoHan, Chen, Meixu, Wu, Linlin, Zhou, Yifeng
Format Journal Article
LanguageEnglish
Published England Royal Society of Chemistry 17.10.2024
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The development of HPLC analytical methods for traditional Chinese medicine is intricate and time-consuming, influenced by factors such as column wear, solvent purity, and instrumental settings. A comprehensive evaluation of the HPLC system is crucial to mitigate potential variability and ensure the reliability of data. This is especially important given the complex and synergistic nature of the chemical components in traditional Chinese medicine, necessitating a multivariate measurement system analysis (MSA) to assess multiple correlated quality characteristics effectively. This study introduced a multivariate MSA method based on weighted principal components (WPC) to evaluate the HPLC system for the determination of metabolites in . By integrating multiple principal components and assigning weights according to their eigenvalues, the WPC method significantly enhanced both accuracy and robustness. It demonstrated a repeatability and reproducibility (% R&R) of 26.43% and a number of distinct categories (ndc) index of 5, confirming the system's acceptability. A full factorial experimental design was employed to identify key performance factors, leading to the recommendation to use five reference solutions for the standard curve and to triple sample preparations for improved precision and accuracy. Monte Carlo simulations confirmed the reliability of the system, showing % R&R and ndc values that follow a normal distribution, ranging from 19% to 22% and 6.07 to 7.38, respectively. Chromatographic conditions were optimized using a Box-Behnken experimental design. Subsequent validation experiments verified the method's high accuracy and reliability, with all relative standard deviation values for analytical precision, repeatability, and stability below 5%. The method also exhibited high recovery rates, exceeding 91% across three concentration levels, with RSD values under 4%. In conclusion, the application of a WPC-based multivariate MSA enabled a detailed evaluation of the HPLC system, ensuring accurate and reliable measurement of quality attributes. This method exemplified a scientifically rigorous approach for developing analytical methods in traditional Chinese medicine, enhancing both precision and reliability.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1759-9660
1759-9679
1759-9679
DOI:10.1039/d4ay01451k