Analysis of Aluminum Extrusion in a 90o Die by Finite Volume Method
Nowadays, the finite element method is still the first choice of researchers in metal extrusion analysis. However, recent published papers have also supported that metal plastic flow can be modelled by the flow formulation, employing the finite volume method. In this work, the numerical scheme prese...
Saved in:
Published in | Advanced materials research Vol. 1135; pp. 153 - 160 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Zurich
Trans Tech Publications Ltd
01.01.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Nowadays, the finite element method is still the first choice of researchers in metal extrusion analysis. However, recent published papers have also supported that metal plastic flow can be modelled by the flow formulation, employing the finite volume method. In this work, the numerical scheme presented by Martins et al. [16] based on finite volume method together with the explicit MacCormack numerical method, was used to analyse aluminum axisymmetric direct extrusion in a 90° die. A structured, fixed and collocated mesh and numerical convergence based on the SIMPLE method were employed to attain pressure-velocity coupling. The main goal of present numerical scheme was to obtain the axial and radial velocities and pressure distributions. From these results, it was possible to obtain and identify the dead zone inside the billet deformation region in direct extrusion of aluminum in a 90° die. The field variables results shown in present work had good agreement when compared with those from literature. |
---|---|
Bibliography: | Special topic volume with invited peer reviewed papers only. |
ISSN: | 1022-6680 1662-8985 1662-8985 |
DOI: | 10.4028/www.scientific.net/AMR.1135.153 |