Improving the local search capability of Effective Butterfly Optimizer using Covariance Matrix Adapted Retreat Phase
Effective Butterfly Optimizer(EBO) is a self-adaptive Butterfly Optimizer which incorporates a crossover operator in Perching and Patrolling to increase the diversity of the population. This paper proposes a new retreat phase called Covariance Matrix Adapted Retreat Phase (CMAR), which uses covarian...
Saved in:
Published in | 2017 IEEE Congress on Evolutionary Computation (CEC) pp. 1835 - 1842 |
---|---|
Main Authors | , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.06.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Effective Butterfly Optimizer(EBO) is a self-adaptive Butterfly Optimizer which incorporates a crossover operator in Perching and Patrolling to increase the diversity of the population. This paper proposes a new retreat phase called Covariance Matrix Adapted Retreat Phase (CMAR), which uses covariance matrix to generate a new solution and thus improves the local search capability of EBO. This version of EBO is called EBOwithCMAR. We evaluated the performance of EBOwithCMAR on CEC-2017 benchmark problems and compared with the results of winners of a special session of CEC-2016 for bound-constrained problems. The experimental results show that EBOwithCMAR is competitive with the compared algorithms. |
---|---|
DOI: | 10.1109/CEC.2017.7969524 |