Chemotherapy induced cardiomyopathy: pathogenesis, monitoring and management

The survival rate of cancer patients has greatly increased over the last 20 years. However, to achieve this result, a considerable price has been paid in terms of the side effects associated with the intensive anticancer treatment. The most common adverse effect is cardiotoxicity which may compromis...

Full description

Saved in:
Bibliographic Details
Published inJournal of clinical medicine research Vol. 1; no. 1; pp. 8 - 12
Main Authors Shakir, Douraid K, Rasul, Kakil I
Format Journal Article
LanguageEnglish
Published Canada Elmer Press 01.04.2009
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The survival rate of cancer patients has greatly increased over the last 20 years. However, to achieve this result, a considerable price has been paid in terms of the side effects associated with the intensive anticancer treatment. The most common adverse effect is cardiotoxicity which may compromise the clinical effectiveness of chemotherapy, affecting the patient's survival and quality of life independently of the oncological prognosis. There are 2 types of cardiac toxicities, type I which is more serious and result in permanent damage to the myocardium and type II which is usually reversible. Chemotherapies varies in their incidence of inducing cardiomyopathy, and the onset which may occur acutely (during or shortly after treatment), sub-acutely (within days or weeks after completion of chemotherapy) or chronically (weeks to months after drug administration). Cardiac events associated with chemotherapy may consist of mild blood pressure changes, thrombosis, Electrocardiographic (ECG) changes, arrhythmias, myocarditis, pericarditis, myocardial infarction, cardiomyopathy, cardiac failure (left ventricular failure), and congestive heart failure (CHF). The risk for such effects depends upon: cumulative dose, rate of drug administration, mediastinal radiation, advanced age, younger age, female gender, pre-existing heart disease and hypertension. Serial measurements of LVEF and fractional shortening are the most common indices monitored to assess left ventricular systolic function and cardiotoxicity. This can be achieved by 2-dimensional, M-mode and color Doppler echocardiographic examination; also Cardiac troponins as a biological marker for myocardial damage can be used for monitoring in patients received anthracyclines. Angiotensin-converting enzyme (ACE) inhibitors (ACEIs) have been shown to slow the progression of left ventricular dysfunction in several different clinical settings, including anthracycline-induced cardiomyopathy. Carvedilol and probably with anti-oxidants like Probucol and vitamin E benefits also. Anthracyclines; Cardiomyopathy; Chemotherapy.
ISSN:1918-3003
1918-3011
DOI:10.4021/jocmr2009.02.1225