Cellulose acetylation in ionic liquid-molecular solvent mixtures: influence of the biopolymer-induced preferential solvation on its dissolution and reactivity
Microcrystalline cellulose was subjected to acetylation by different agents in solvent mixtures, composed of the ionic liquids (ILs) 1-butyl-3-methylimidazolium X (X = acetate, BuMeImAcO; chloride, BuMeImCl), and the molecular solvents (MSs), N , N -dimethylacetamide (DMAc) and dimethyl sulfoxide (D...
Saved in:
Published in | Cellulose (London) Vol. 31; no. 15; pp. 9043 - 9055 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Dordrecht
Springer Netherlands
01.10.2024
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Microcrystalline cellulose was subjected to acetylation by different agents in solvent mixtures, composed of the ionic liquids (ILs) 1-butyl-3-methylimidazolium X (X = acetate, BuMeImAcO; chloride, BuMeImCl), and the molecular solvents (MSs),
N
,
N
-dimethylacetamide (DMAc) and dimethyl sulfoxide (DMSO). The reactions were carried out under homogeneous conditions using the following acetylation agents: acetic anhydride ((Ac)
2
O), 1-acetyl-3-methylimidazolium acetate (AcMeImAcO), and vinyl acetate (VA). The efficiency of acetylation was judged by the degree of biopolymer substitution, DS. For all binary solvent mixtures, the order of DS was: AcMeImAcO > (Ac)
2
O > VA. For the same acetylating agent, the order of DS was: BuMeImAcO-DMSO > BuMeImAcO-DMAc > BuMeImCl-DMSO. We rationalize this dependence of DS on reaction conditions by considering our experimental data and the results of molecular dynamics simulations (MD). Thus, solvent-induced separation of cellulose chains leads to higher acetylation rates, hence larger DS values. The order of biopolymer dissolution/chain separation is attributed to a combination of hydrogen-bonding of the IL anion with cellulose hydroxyl groups, and biopolymer-solvent hydrophobic interactions. The results of MD simulations showed an additional important point: the compositions of the cellulose solvation layers are different from those of bulk solvent mixtures; they are richer in IL ions; this difference affects the values of DS. Thus, theoretical calculations help in choosing the best solvents for cellulose dissolution/derivatization. |
---|---|
ISSN: | 0969-0239 1572-882X |
DOI: | 10.1007/s10570-024-06014-4 |