Graph Convolution Network Based Classification of Subjects with Prefrontal Cortex Lesion via Information-theoretic Brain Network Features
This paper investigates scalp electroencephalogram (EEG) data from 14 subjects with unilateral prefrontal cortex (pFC) lesions and 20 healthy controls during lateral visuospatial working memory (WM) tasks. The goal is to differentiate the brain networks involved in WM processing between these groups...
Saved in:
Published in | Journal of signal processing systems Vol. 96; no. 11; pp. 685 - 696 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.11.2024
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | This paper investigates scalp electroencephalogram (EEG) data from 14 subjects with unilateral prefrontal cortex (pFC) lesions and 20 healthy controls during lateral visuospatial working memory (WM) tasks. The goal is to differentiate the brain networks involved in WM processing between these groups. The EEG recordings are transformed into graph signals, with proximity-weighted brain connectivity measures as edges and centrality measures as nodal features. Graph convolutional network (GCN) layers are used for feature representation, followed by a fully connected layer for classification. The GCN-based model effectively handles nine classification tasks, proving that graph-based network representation is versatile for describing brain interactions. The sparse MI-GCI-based graph model’s accuracy effectively captures the functional segregation of distinct WM tasks. The classifier using
mutual information-guided Granger causality index (MI-GCI)
with 20% of top edges matched prior classification performance with 67% fewer parameters and 80% less graph density, identifying the correct class of all 34 subjects in group identification using leave-one-out cross-validation and two-thirds majority voting. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 1939-8018 1939-8115 |
DOI: | 10.1007/s11265-025-01944-z |