Climate change may alter the availability of wild food plants in the Brazilian semiarid

Wild food plants (WFPs) are important components of the diet and a source of income for local communities in semiarid regions, given that these populations are commonly characterized by high socioeconomic vulnerability and dependence on natural resources for subsistence. In periods of food scarcity...

Full description

Saved in:
Bibliographic Details
Published inRegional environmental change Vol. 24; no. 2; p. 86
Main Authors da Silva, Amanda Stefanie Sérgio, Arnan, Xavier, de Medeiros, Patrícia Muniz
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.06.2024
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Wild food plants (WFPs) are important components of the diet and a source of income for local communities in semiarid regions, given that these populations are commonly characterized by high socioeconomic vulnerability and dependence on natural resources for subsistence. In periods of food scarcity and crop failure, WFPs emerge as strategic resources for ensuring food and nutrition security. However, these little-researched plants may also be affected by climate change. Here, our objective was to determine the spatiotemporal dynamics of WFPs in the Brazilian semiarid and evaluate their potential availability in future climate change scenarios. We constructed habitat suitability models for economically and nutritionally important WFPs used in this region and projected future scenarios (2041–2060). Furthermore, we determined the geographical distribution, species richness, and composition (on local and regional scales) of WFPs in current and future scenarios. Our results showed that WFPs exhibited varied responses to climate change. The more pessimistic the future scenario, the greater the negative effects. Most WFP species exhibited a reduction in climatically suitable areas in future scenarios, resulting in a shrinkage of geographical ranges, a reduction in species richness, and alterations in community composition. These changes could have important implications for economic development, subsistence, and food and nutrition security in the region. Our findings offer insights that can guide actions for adaptation and mitigating the effects of climate change and promoting species conservation not only in the Brazilian semiarid but also in other semiarid regions worldwide.
ISSN:1436-3798
1436-378X
DOI:10.1007/s10113-024-02250-3