Synthesis of silver nanoparticles from extracts of Scytonema geitleri HKAR-12 and their in vitro antibacterial and antitumor potentials

In the present study silver nanoparticles (AgNPs) have been synthesized through the cell-free extracts of the rooftop dwelling cyanobacterium Scytonema geitleri HKAR-12. UV-VIS spectroscopy, FTIR, X-ray diffraction, SEM and TEM were used for the determination of morphological, structural and optical...

Full description

Saved in:
Bibliographic Details
Published inLetters in Applied NanoBioScience Vol. 8; no. 3; pp. 576 - 585
Format Journal Article
LanguageEnglish
Published 30.09.2019
Online AccessGet full text

Cover

Loading…
More Information
Summary:In the present study silver nanoparticles (AgNPs) have been synthesized through the cell-free extracts of the rooftop dwelling cyanobacterium Scytonema geitleri HKAR-12. UV-VIS spectroscopy, FTIR, X-ray diffraction, SEM and TEM were used for the determination of morphological, structural and optical properties of synthesized AgNPs. Extracts of Scytonema geitleri HKAR-12 have the ability to reduce AgNO3 to Ag0. Sharp peak at 422 nm indicated the rapid synthesis of AgNPs. FTIR results showed the presence of different groups responsible for the reduction of AgNO3 to AgNPs. XRD pattern confirmed the crystalline nature of AgNPs. SEM showed the bead shape structure of AgNPs. TEM confirmed the actual size of AgNPs to be ranging between 9-17 nm. AgNPs showed antibacterial activity against Pseudomonas aeruginosa, Escherichia coli strain1 and E. coli strain 2 and 11 μg/mL of AgNPs effectively inhibited the growth of MCF-7 cells. Hence, Scytonema geitleri HKAR-12, isolated from the rooftop could serve as a desirable biological candidate for convenient and cheap production of AgNPs having antimicrobial and anti-cancerous properties.
ISSN:2284-6808
2284-6808
DOI:10.33263/LIANBS83.576585