On the complexity of a putative counterexample to the -adic Littlewood conjecture

Let $\Vert \cdot \Vert$ denote the distance to the nearest integer and, for a prime number $p$ , let $|\cdot |_{p}$ denote the $p$ -adic absolute value. Over a decade ago, de Mathan and Teulié [ Problèmes diophantiens simultanés , Monatsh. Math. 143 (2004), 229–245] asked whether $\inf _{q\geqslant...

Full description

Saved in:
Bibliographic Details
Published inCompositio mathematica Vol. 151; no. 9; pp. 1647 - 1662
Main Authors Badziahin, Dmitry, Bugeaud, Yann, Einsiedler, Manfred, Kleinbock, Dmitry
Format Journal Article
LanguageEnglish
Published Foundation Compositio Mathematica 01.09.2015
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Let $\Vert \cdot \Vert$ denote the distance to the nearest integer and, for a prime number $p$ , let $|\cdot |_{p}$ denote the $p$ -adic absolute value. Over a decade ago, de Mathan and Teulié [ Problèmes diophantiens simultanés , Monatsh. Math. 143 (2004), 229–245] asked whether $\inf _{q\geqslant 1}$ $q\cdot \Vert q{\it\alpha}\Vert \cdot |q|_{p}=0$ holds for every badly approximable real number ${\it\alpha}$ and every prime number $p$ . Among other results, we establish that, if the complexity of the sequence of partial quotients of a real number ${\it\alpha}$ grows too rapidly or too slowly, then their conjecture is true for the pair $({\it\alpha},p)$ with $p$ an arbitrary prime.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0010-437X
1570-5846
DOI:10.1112/S0010437X15007393