COUNTING POINTS ON DWORK HYPERSURFACES AND $p$ -ADIC HYPERGEOMETRIC FUNCTIONS

We express the number of points on the Dwork hypersurface $X_{\unicode[STIX]{x1D706}}^{d}:x_{1}^{d}+x_{2}^{d}+\cdots +x_{d}^{d}=d\unicode[STIX]{x1D706}x_{1}x_{2}\cdots x_{d}$ over a finite field of order $q\not \equiv 1\,(\text{mod}\,d)$ in terms of McCarthy’s $p$ -adic hypergeometric function for a...

Full description

Saved in:
Bibliographic Details
Published inBulletin of the Australian Mathematical Society Vol. 94; no. 2; pp. 208 - 216
Main Authors BARMAN, RUPAM, RAHMAN, HASANUR, SAIKIA, NEELAM
Format Journal Article
LanguageEnglish
Published Cambridge, UK Cambridge University Press 01.10.2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We express the number of points on the Dwork hypersurface $X_{\unicode[STIX]{x1D706}}^{d}:x_{1}^{d}+x_{2}^{d}+\cdots +x_{d}^{d}=d\unicode[STIX]{x1D706}x_{1}x_{2}\cdots x_{d}$ over a finite field of order $q\not \equiv 1\,(\text{mod}\,d)$ in terms of McCarthy’s $p$ -adic hypergeometric function for any odd prime $d$ .
AbstractList We express the number of points on the Dwork hypersurface $X_{\unicode[STIX]{x1D706}}^{d}:x_{1}^{d}+x_{2}^{d}+\cdots +x_{d}^{d}=d\unicode[STIX]{x1D706}x_{1}x_{2}\cdots x_{d}$ over a finite field of order $q\not \equiv 1\,(\text{mod}\,d)$ in terms of McCarthy’s $p$ -adic hypergeometric function for any odd prime $d$ .
Author RAHMAN, HASANUR
BARMAN, RUPAM
SAIKIA, NEELAM
Author_xml – sequence: 1
  givenname: RUPAM
  surname: BARMAN
  fullname: BARMAN, RUPAM
  email: rupam@maths.iitd.ac.in
  organization: Department of Mathematics, Indian Institute of Technology, Hauz Khas, New Delhi-110016, India email rupam@maths.iitd.ac.in
– sequence: 2
  givenname: HASANUR
  surname: RAHMAN
  fullname: RAHMAN, HASANUR
  email: hasrah93@gmail.com
  organization: Department of Mathematics, Indian Institute of Technology, Hauz Khas, New Delhi-110016, India email hasrah93@gmail.com
– sequence: 3
  givenname: NEELAM
  surname: SAIKIA
  fullname: SAIKIA, NEELAM
  email: nlmsaikia1@gmail.com
  organization: Department of Mathematics, Indian Institute of Technology, Hauz Khas, New Delhi-110016, India email nlmsaikia1@gmail.com
BookMark eNplkDtPwzAAhC1UJNLCD2Dz0NXgR2zHY5RXI1q7ykOIKYqTGFFBixr6_0lUNqbT6ZPudLcEi-PpOADwSPATwUQ-lxhjX0kqCceYBL68AR6RnCMiGFsAb8Zo5ndgOY6HyXFOAw_sIlPrKtcZ3JtcVyU0GsavpniBm7d9UpR1kYZRUsJQx3D9vYYojPPoyrLE7JKqmGxa66jKjS7vwa1rP8fh4U9XoE6TKtqgrcnyKNyijij1g5zyqWz9VgW0V05IJRh1inVKYuE45107rbCWcmcFca20zqquHwTGVvodHtgKsGtu137Z80f_PjSH0-V8nDobgpv5kebfI-wXEX9OBw
ContentType Journal Article
Copyright 2016 Australian Mathematical Publishing Association Inc.
Copyright_xml – notice: 2016 Australian Mathematical Publishing Association Inc.
DOI 10.1017/S0004972715001847
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
DocumentTitleAlternate Counting points on Dwork hypersurfaces and $p$ -adic hypergeometric functions
R. Barman, H. Rahman and N. Saikia
EISSN 1755-1633
EndPage 216
ExternalDocumentID 10_1017_S0004972715001847
GroupedDBID --Z
-1D
-1F
-2P
-2V
-E.
-~6
-~N
-~X
.FH
09C
09E
0E1
0R~
23N
2WC
4.4
5GY
5VS
6J9
6TJ
6~7
74X
74Y
7~V
88I
9M5
AAAZR
AABES
AABWE
AACJH
AAEED
AAGFV
AAKTX
AAMNQ
AANRG
AARAB
AASVR
AAUIS
AAUKB
ABBXD
ABBZL
ABGDZ
ABITZ
ABJCF
ABJNI
ABKKG
ABMWE
ABMYL
ABQTM
ABROB
ABTAH
ABUWG
ABVFV
ABXAU
ABZCX
ABZUI
ACBMC
ACCHT
ACETC
ACGFO
ACGFS
ACIMK
ACMRT
ACQFJ
ACREK
ACUIJ
ACUYZ
ACWGA
ACYZP
ACZBM
ACZUX
ACZWT
ADCGK
ADDNB
ADFEC
ADGEJ
ADKIL
ADOCW
ADOVH
ADOVT
ADVJH
AEBAK
AEBPU
AEGXH
AEHGV
AEMTW
AENCP
AENEX
AENGE
AEYYC
AFFNX
AFFUJ
AFKQG
AFKRA
AFLOS
AFLVW
AFUTZ
AGABE
AGBYD
AGJUD
AGLWM
AGOOT
AHQXX
AHRGI
AI.
AIAGR
AIGNW
AIHIV
AIOIP
AISIE
AJ7
AJCYY
AJPFC
AJQAS
AKZCZ
ALMA_UNASSIGNED_HOLDINGS
ALWZO
AQJOH
ARABE
ARZZG
ATUCA
AUXHV
AYIQA
AZQEC
BBLKV
BCGOX
BENPR
BESQT
BGHMG
BGLVJ
BJBOZ
BLZWO
BMAJL
BQFHP
C0O
CAG
CBIIA
CCPQU
CCQAD
CCUQV
CDIZJ
CFAFE
CFBFF
CGQII
CHEAL
CJCSC
COF
CS3
DC4
DOHLZ
DU5
DWQXO
EBS
EGQIC
EJD
ESX
GNUQQ
HCIFZ
HG-
HST
HZ~
H~9
I.6
I.7
I.9
IH6
IOEEP
IOO
IS6
I~P
J36
J38
J3A
JHPGK
JQKCU
KAFGG
KC5
KCGVB
KFECR
KWQ
L98
LHUNA
LW7
M-V
M2P
M7S
M7~
M8.
NIKVX
NMFBF
NZEOI
O9-
OHT
OK1
P2P
PTHSS
PYCCK
RAMDC
RCA
ROL
RR0
S10
S6-
S6U
SAAAG
T9M
TN5
TWZ
UPT
UT1
VH1
WFFJZ
WQ3
WXU
WXY
WYP
ZCG
ZDLDU
ZJOSE
ZMEZD
ZY4
ZYDXJ
~V1
ID FETCH-LOGICAL-c199t-f9427a4a982d9f679632f93c9706f555ca150bb25fb61fa7bfb9cde600b74c0e3
ISSN 0004-9727
IngestDate Wed Mar 13 05:55:51 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords hypergeometric series
Teichmüller character
Dwork hypersurfaces
33E50
characters of finite fields
p-adic gamma function
primary 11G25
33C20
secondary 11S80
11T24
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c199t-f9427a4a982d9f679632f93c9706f555ca150bb25fb61fa7bfb9cde600b74c0e3
PageCount 9
ParticipantIDs cambridge_journals_10_1017_S0004972715001847
PublicationCentury 2000
PublicationDate 20161000
PublicationDateYYYYMMDD 2016-10-01
PublicationDate_xml – month: 10
  year: 2016
  text: 20161000
PublicationDecade 2010
PublicationPlace Cambridge, UK
PublicationPlace_xml – name: Cambridge, UK
PublicationTitle Bulletin of the Australian Mathematical Society
PublicationTitleAlternate Bull. Aust. Math. Soc
PublicationYear 2016
Publisher Cambridge University Press
Publisher_xml – name: Cambridge University Press
SSID ssj0045528
Score 2.1393075
Snippet We express the number of points on the Dwork hypersurface $X_{\unicode[STIX]{x1D706}}^{d}:x_{1}^{d}+x_{2}^{d}+\cdots...
SourceID cambridge
SourceType Publisher
StartPage 208
Title COUNTING POINTS ON DWORK HYPERSURFACES AND $p$ -ADIC HYPERGEOMETRIC FUNCTIONS
URI https://www.cambridge.org/core/product/identifier/S0004972715001847/type/journal_article
Volume 94
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jc5swFNa4yaU9dLpO0210cE8uGSMkhI7UwcVNAQ_LND15EJaOTqZxLv0T_ct9CBnjpplpeoABsQ28j7fp6RNCY6VEa0akU7O151Au3Xaal8bRQbDmPm20r9o8ZJL6cUW_XLCL0ejXoGrpZitPm59_HVfyP1KFNpBrO0r2HpLtbwoNsA3yhTVIGNb_JONZVqVlm25aZou0LCZZOjn7luXnk_j7MsqLKp-Hs6gwDFIfCL2CZeKEZ_DdzfHPUZZEZQ678yo1tSTFQRevJebeVREMsiJJz_Xacolc9mQiJq4P8yQ0tQN5tdyXD-RhbJvjsAjTqu9gKsLF-SI0oIyir_YCm4Zw_b6gbXv3CLNhFUmnfakjeMcFcKo6hcsZc8An9IYauZv22CKPDNXrNBhYatKN0rxlBCxzlIl-4Gng8k4hjuV7i9fXIXYlbnx169wH6JiA5gKVefwpSpf5zrhTxkhn3O2r7DrKDQv5HzcZ0nUMnJbyCXpsow0cdtB5ikZq8ww92ovv-jlKdiDCHYhwlmIDInwAIgwgwuOrMTYAwocAwj2AXqBqHpWz2LFzbDiNK8TW0YISXtNaBGQtdJtU9IgWXiP41NeMsaaGt5GSMC19V9dcaimatQI3WXLaTJX3Eh1tLjfqFcLM9Sg0EV9DlBtwUdeUtgR3bqC4pq44QR_7z7Gyf9H16k4RvL7f6W_Qwz0s36Kj7Y8b9Q78xa18b2X4G16mVEw
link.rule.ids 315,783,787,27936,27937
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=COUNTING+POINTS+ON+DWORK+HYPERSURFACES+AND+%24p%24+-ADIC+HYPERGEOMETRIC+FUNCTIONS&rft.jtitle=Bulletin+of+the+Australian+Mathematical+Society&rft.au=BARMAN%2C+RUPAM&rft.au=RAHMAN%2C+HASANUR&rft.au=SAIKIA%2C+NEELAM&rft.date=2016-10-01&rft.pub=Cambridge+University+Press&rft.issn=0004-9727&rft.eissn=1755-1633&rft.volume=94&rft.issue=2&rft.spage=208&rft.epage=216&rft_id=info:doi/10.1017%2FS0004972715001847&rft.externalDocID=10_1017_S0004972715001847
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0004-9727&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0004-9727&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0004-9727&client=summon