COUNTING POINTS ON DWORK HYPERSURFACES AND $p$ -ADIC HYPERGEOMETRIC FUNCTIONS
We express the number of points on the Dwork hypersurface $X_{\unicode[STIX]{x1D706}}^{d}:x_{1}^{d}+x_{2}^{d}+\cdots +x_{d}^{d}=d\unicode[STIX]{x1D706}x_{1}x_{2}\cdots x_{d}$ over a finite field of order $q\not \equiv 1\,(\text{mod}\,d)$ in terms of McCarthy’s $p$ -adic hypergeometric function for a...
Saved in:
Published in | Bulletin of the Australian Mathematical Society Vol. 94; no. 2; pp. 208 - 216 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Cambridge, UK
Cambridge University Press
01.10.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We express the number of points on the Dwork hypersurface
$X_{\unicode[STIX]{x1D706}}^{d}:x_{1}^{d}+x_{2}^{d}+\cdots +x_{d}^{d}=d\unicode[STIX]{x1D706}x_{1}x_{2}\cdots x_{d}$
over a finite field of order
$q\not \equiv 1\,(\text{mod}\,d)$
in terms of McCarthy’s
$p$
-adic hypergeometric function for any odd prime
$d$
. |
---|---|
AbstractList | We express the number of points on the Dwork hypersurface
$X_{\unicode[STIX]{x1D706}}^{d}:x_{1}^{d}+x_{2}^{d}+\cdots +x_{d}^{d}=d\unicode[STIX]{x1D706}x_{1}x_{2}\cdots x_{d}$
over a finite field of order
$q\not \equiv 1\,(\text{mod}\,d)$
in terms of McCarthy’s
$p$
-adic hypergeometric function for any odd prime
$d$
. |
Author | RAHMAN, HASANUR BARMAN, RUPAM SAIKIA, NEELAM |
Author_xml | – sequence: 1 givenname: RUPAM surname: BARMAN fullname: BARMAN, RUPAM email: rupam@maths.iitd.ac.in organization: Department of Mathematics, Indian Institute of Technology, Hauz Khas, New Delhi-110016, India email rupam@maths.iitd.ac.in – sequence: 2 givenname: HASANUR surname: RAHMAN fullname: RAHMAN, HASANUR email: hasrah93@gmail.com organization: Department of Mathematics, Indian Institute of Technology, Hauz Khas, New Delhi-110016, India email hasrah93@gmail.com – sequence: 3 givenname: NEELAM surname: SAIKIA fullname: SAIKIA, NEELAM email: nlmsaikia1@gmail.com organization: Department of Mathematics, Indian Institute of Technology, Hauz Khas, New Delhi-110016, India email nlmsaikia1@gmail.com |
BookMark | eNplkDtPwzAAhC1UJNLCD2Dz0NXgR2zHY5RXI1q7ykOIKYqTGFFBixr6_0lUNqbT6ZPudLcEi-PpOADwSPATwUQ-lxhjX0kqCceYBL68AR6RnCMiGFsAb8Zo5ndgOY6HyXFOAw_sIlPrKtcZ3JtcVyU0GsavpniBm7d9UpR1kYZRUsJQx3D9vYYojPPoyrLE7JKqmGxa66jKjS7vwa1rP8fh4U9XoE6TKtqgrcnyKNyijij1g5zyqWz9VgW0V05IJRh1inVKYuE45107rbCWcmcFca20zqquHwTGVvodHtgKsGtu137Z80f_PjSH0-V8nDobgpv5kebfI-wXEX9OBw |
ContentType | Journal Article |
Copyright | 2016 Australian Mathematical Publishing Association Inc. |
Copyright_xml | – notice: 2016 Australian Mathematical Publishing Association Inc. |
DOI | 10.1017/S0004972715001847 |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
DocumentTitleAlternate | Counting points on Dwork hypersurfaces and $p$ -adic hypergeometric functions R. Barman, H. Rahman and N. Saikia |
EISSN | 1755-1633 |
EndPage | 216 |
ExternalDocumentID | 10_1017_S0004972715001847 |
GroupedDBID | --Z -1D -1F -2P -2V -E. -~6 -~N -~X .FH 09C 09E 0E1 0R~ 23N 2WC 4.4 5GY 5VS 6J9 6TJ 6~7 74X 74Y 7~V 88I 9M5 AAAZR AABES AABWE AACJH AAEED AAGFV AAKTX AAMNQ AANRG AARAB AASVR AAUIS AAUKB ABBXD ABBZL ABGDZ ABITZ ABJCF ABJNI ABKKG ABMWE ABMYL ABQTM ABROB ABTAH ABUWG ABVFV ABXAU ABZCX ABZUI ACBMC ACCHT ACETC ACGFO ACGFS ACIMK ACMRT ACQFJ ACREK ACUIJ ACUYZ ACWGA ACYZP ACZBM ACZUX ACZWT ADCGK ADDNB ADFEC ADGEJ ADKIL ADOCW ADOVH ADOVT ADVJH AEBAK AEBPU AEGXH AEHGV AEMTW AENCP AENEX AENGE AEYYC AFFNX AFFUJ AFKQG AFKRA AFLOS AFLVW AFUTZ AGABE AGBYD AGJUD AGLWM AGOOT AHQXX AHRGI AI. AIAGR AIGNW AIHIV AIOIP AISIE AJ7 AJCYY AJPFC AJQAS AKZCZ ALMA_UNASSIGNED_HOLDINGS ALWZO AQJOH ARABE ARZZG ATUCA AUXHV AYIQA AZQEC BBLKV BCGOX BENPR BESQT BGHMG BGLVJ BJBOZ BLZWO BMAJL BQFHP C0O CAG CBIIA CCPQU CCQAD CCUQV CDIZJ CFAFE CFBFF CGQII CHEAL CJCSC COF CS3 DC4 DOHLZ DU5 DWQXO EBS EGQIC EJD ESX GNUQQ HCIFZ HG- HST HZ~ H~9 I.6 I.7 I.9 IH6 IOEEP IOO IS6 I~P J36 J38 J3A JHPGK JQKCU KAFGG KC5 KCGVB KFECR KWQ L98 LHUNA LW7 M-V M2P M7S M7~ M8. NIKVX NMFBF NZEOI O9- OHT OK1 P2P PTHSS PYCCK RAMDC RCA ROL RR0 S10 S6- S6U SAAAG T9M TN5 TWZ UPT UT1 VH1 WFFJZ WQ3 WXU WXY WYP ZCG ZDLDU ZJOSE ZMEZD ZY4 ZYDXJ ~V1 |
ID | FETCH-LOGICAL-c199t-f9427a4a982d9f679632f93c9706f555ca150bb25fb61fa7bfb9cde600b74c0e3 |
ISSN | 0004-9727 |
IngestDate | Wed Mar 13 05:55:51 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | hypergeometric series Teichmüller character Dwork hypersurfaces 33E50 characters of finite fields p-adic gamma function primary 11G25 33C20 secondary 11S80 11T24 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c199t-f9427a4a982d9f679632f93c9706f555ca150bb25fb61fa7bfb9cde600b74c0e3 |
PageCount | 9 |
ParticipantIDs | cambridge_journals_10_1017_S0004972715001847 |
PublicationCentury | 2000 |
PublicationDate | 20161000 |
PublicationDateYYYYMMDD | 2016-10-01 |
PublicationDate_xml | – month: 10 year: 2016 text: 20161000 |
PublicationDecade | 2010 |
PublicationPlace | Cambridge, UK |
PublicationPlace_xml | – name: Cambridge, UK |
PublicationTitle | Bulletin of the Australian Mathematical Society |
PublicationTitleAlternate | Bull. Aust. Math. Soc |
PublicationYear | 2016 |
Publisher | Cambridge University Press |
Publisher_xml | – name: Cambridge University Press |
SSID | ssj0045528 |
Score | 2.1393075 |
Snippet | We express the number of points on the Dwork hypersurface
$X_{\unicode[STIX]{x1D706}}^{d}:x_{1}^{d}+x_{2}^{d}+\cdots... |
SourceID | cambridge |
SourceType | Publisher |
StartPage | 208 |
Title | COUNTING POINTS ON DWORK HYPERSURFACES AND $p$ -ADIC HYPERGEOMETRIC FUNCTIONS |
URI | https://www.cambridge.org/core/product/identifier/S0004972715001847/type/journal_article |
Volume | 94 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jc5swFNa4yaU9dLpO0210cE8uGSMkhI7UwcVNAQ_LND15EJaOTqZxLv0T_ct9CBnjpplpeoABsQ28j7fp6RNCY6VEa0akU7O151Au3Xaal8bRQbDmPm20r9o8ZJL6cUW_XLCL0ejXoGrpZitPm59_HVfyP1KFNpBrO0r2HpLtbwoNsA3yhTVIGNb_JONZVqVlm25aZou0LCZZOjn7luXnk_j7MsqLKp-Hs6gwDFIfCL2CZeKEZ_DdzfHPUZZEZQ678yo1tSTFQRevJebeVREMsiJJz_Xacolc9mQiJq4P8yQ0tQN5tdyXD-RhbJvjsAjTqu9gKsLF-SI0oIyir_YCm4Zw_b6gbXv3CLNhFUmnfakjeMcFcKo6hcsZc8An9IYauZv22CKPDNXrNBhYatKN0rxlBCxzlIl-4Gng8k4hjuV7i9fXIXYlbnx169wH6JiA5gKVefwpSpf5zrhTxkhn3O2r7DrKDQv5HzcZ0nUMnJbyCXpsow0cdtB5ikZq8ww92ovv-jlKdiDCHYhwlmIDInwAIgwgwuOrMTYAwocAwj2AXqBqHpWz2LFzbDiNK8TW0YISXtNaBGQtdJtU9IgWXiP41NeMsaaGt5GSMC19V9dcaimatQI3WXLaTJX3Eh1tLjfqFcLM9Sg0EV9DlBtwUdeUtgR3bqC4pq44QR_7z7Gyf9H16k4RvL7f6W_Qwz0s36Kj7Y8b9Q78xa18b2X4G16mVEw |
link.rule.ids | 315,783,787,27936,27937 |
linkProvider | ProQuest |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=COUNTING+POINTS+ON+DWORK+HYPERSURFACES+AND+%24p%24+-ADIC+HYPERGEOMETRIC+FUNCTIONS&rft.jtitle=Bulletin+of+the+Australian+Mathematical+Society&rft.au=BARMAN%2C+RUPAM&rft.au=RAHMAN%2C+HASANUR&rft.au=SAIKIA%2C+NEELAM&rft.date=2016-10-01&rft.pub=Cambridge+University+Press&rft.issn=0004-9727&rft.eissn=1755-1633&rft.volume=94&rft.issue=2&rft.spage=208&rft.epage=216&rft_id=info:doi/10.1017%2FS0004972715001847&rft.externalDocID=10_1017_S0004972715001847 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0004-9727&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0004-9727&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0004-9727&client=summon |