COUNTING POINTS ON DWORK HYPERSURFACES AND $p$ -ADIC HYPERGEOMETRIC FUNCTIONS
We express the number of points on the Dwork hypersurface $X_{\unicode[STIX]{x1D706}}^{d}:x_{1}^{d}+x_{2}^{d}+\cdots +x_{d}^{d}=d\unicode[STIX]{x1D706}x_{1}x_{2}\cdots x_{d}$ over a finite field of order $q\not \equiv 1\,(\text{mod}\,d)$ in terms of McCarthy’s $p$ -adic hypergeometric function for a...
Saved in:
Published in | Bulletin of the Australian Mathematical Society Vol. 94; no. 2; pp. 208 - 216 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Cambridge, UK
Cambridge University Press
01.10.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | We express the number of points on the Dwork hypersurface
$X_{\unicode[STIX]{x1D706}}^{d}:x_{1}^{d}+x_{2}^{d}+\cdots +x_{d}^{d}=d\unicode[STIX]{x1D706}x_{1}x_{2}\cdots x_{d}$
over a finite field of order
$q\not \equiv 1\,(\text{mod}\,d)$
in terms of McCarthy’s
$p$
-adic hypergeometric function for any odd prime
$d$
. |
---|---|
ISSN: | 0004-9727 1755-1633 |
DOI: | 10.1017/S0004972715001847 |