COUNTING POINTS ON DWORK HYPERSURFACES AND $p$ -ADIC HYPERGEOMETRIC FUNCTIONS

We express the number of points on the Dwork hypersurface $X_{\unicode[STIX]{x1D706}}^{d}:x_{1}^{d}+x_{2}^{d}+\cdots +x_{d}^{d}=d\unicode[STIX]{x1D706}x_{1}x_{2}\cdots x_{d}$ over a finite field of order $q\not \equiv 1\,(\text{mod}\,d)$ in terms of McCarthy’s $p$ -adic hypergeometric function for a...

Full description

Saved in:
Bibliographic Details
Published inBulletin of the Australian Mathematical Society Vol. 94; no. 2; pp. 208 - 216
Main Authors BARMAN, RUPAM, RAHMAN, HASANUR, SAIKIA, NEELAM
Format Journal Article
LanguageEnglish
Published Cambridge, UK Cambridge University Press 01.10.2016
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We express the number of points on the Dwork hypersurface $X_{\unicode[STIX]{x1D706}}^{d}:x_{1}^{d}+x_{2}^{d}+\cdots +x_{d}^{d}=d\unicode[STIX]{x1D706}x_{1}x_{2}\cdots x_{d}$ over a finite field of order $q\not \equiv 1\,(\text{mod}\,d)$ in terms of McCarthy’s $p$ -adic hypergeometric function for any odd prime $d$ .
ISSN:0004-9727
1755-1633
DOI:10.1017/S0004972715001847