Effect of dissolved organic nitrogen on the bloom of Prorocentrum donghaiense and Karenia spp. in the East China Sea coastal waters

Understanding the mechanism of harmful algal bloom formation is vital for effectively preventing algal bloom outbreaks in coastal environments. Karenia spp. blooms in the East China Sea show a significant correlation with nutrient regimes. However, the impact of key components of nutrients, especial...

Full description

Saved in:
Bibliographic Details
Published inActa oceanologica Sinica Vol. 43; no. 6; pp. 71 - 85
Main Authors Cui, Xiaoru, Zhen, Guangming, Zhao, Jing, Li, Keqiang, Wang, Xiulin
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.06.2024
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Understanding the mechanism of harmful algal bloom formation is vital for effectively preventing algal bloom outbreaks in coastal environments. Karenia spp. blooms in the East China Sea show a significant correlation with nutrient regimes. However, the impact of key components of nutrients, especially dissolved organic nitrogen (DON), on the blooms of Karenia spp. is not clear. Quantitative research is still lacking. In this study, the cruise observations, field mesocosm-flask culture experiments, and a multinitrogen-tri-phytoplankton-detritus model (NTPD) are combined to reveal the quantitative influence of nutrient regimes on the shift of Prorocentrum donghaiense and Karenia spp. in the East China Sea. It has a synchronism rhythm of diatom- P. donghaiense-Karenia spp.-diatom loop in the field culture experiment, which is consistent with the results of the cruise observation. The results showed that the processes of terrigenous DON (TeDON) and dissolved inorganic nitrogen (DIN: NO 3 − -N, NH 4 + -N) absorption promoted P. donghaiense to become the dominant algae in the community; whereas the processes of DON from P. donghaiense absorption promoted Karenia spp. to become the dominant algae in ambient DIN exhaustion. In addition, the three-dimensional fluorescence components of humus C, tyrosine and fulvic acid can indicate the processes of growth and extinction of P. donghaiense and Karenia spp., respectively. This study infers that P. donghaiense and Karenia spp. regime shift mechanism associated with the nutrient regime in coastal waters, which provides a scientific basis for the environmental management of coastal ecosystem health.
ISSN:0253-505X
1869-1099
DOI:10.1007/s13131-023-2308-9