Conductometric Properties and UV–Vis Spectroscopic Study of L-Glutamic Acid in Aqueous Solutions of L-Arabinose and D-Xylose in the Temperature Range of 293.15–313.15 K at Atmospheric Pressure

In this work, the electrical conductance approach is used to investigate the molecular interactions between nonessential amino acid (L-glutamic acid) and carbohydrates (L-arabinose/D-xylose) at various temperatures. Many characteristics, including limiting molar conductance ( ), Walden product ( ),...

Full description

Saved in:
Bibliographic Details
Published inRussian Journal of Physical Chemistry A Vol. 98; no. 10; pp. 2262 - 2275
Main Authors Pradhan, Rupesh Kumar, Singh, Sulochana
Format Journal Article
LanguageEnglish
Published Moscow Pleiades Publishing 01.10.2024
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In this work, the electrical conductance approach is used to investigate the molecular interactions between nonessential amino acid (L-glutamic acid) and carbohydrates (L-arabinose/D-xylose) at various temperatures. Many characteristics, including limiting molar conductance ( ), Walden product ( ), activation energy ( ), and thermodynamic parameters, were obtained for the binary and ternary solutions of L-glutamic acid (Glu) from the electrical conductance ( ) measurement. The acquired thermodynamic quantities were interpreted in terms of the systems’ physicochemical interactions. The behavior of small biomolecules (amino acid) and saccharides in solute-solvent interactions is shown by the influence of numerous parameters, including concentration, temperature, and the position of axial and equatorial –OH groups of the saccharides, on these quantities. Hydrophilic-hydrophilic or ion-hydrophilic interactions predominate in the systems that are being studied is supported by the UV–Vis spectroscopy investigations’ absorption values.
ISSN:0036-0244
1531-863X
DOI:10.1134/S0036024424701425