Inelastic state-to-state scattering of OH (2Pi3/2, J=3/2,f) by HCl

Parity resolved state-to-state cross sections for inelastic scattering of OH (X2Pi) by HCl were measured in a crossed molecular beam experiment at the collision energy of 920 cm(-1). The OH (X2Pi) radicals were prepared in a single quantum state, Omega=3/2, J=3/2, MJ=3/2, f, by means of electrostati...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of chemical physics Vol. 122; no. 7; p. 074319
Main Authors Cireasa, R, van Beek, M C, Moise, A, ter Meulen, J J
Format Journal Article
LanguageEnglish
Published United States 15.02.2005
Online AccessGet more information

Cover

Loading…
More Information
Summary:Parity resolved state-to-state cross sections for inelastic scattering of OH (X2Pi) by HCl were measured in a crossed molecular beam experiment at the collision energy of 920 cm(-1). The OH (X2Pi) radicals were prepared in a single quantum state, Omega=3/2, J=3/2, MJ=3/2, f, by means of electrostatic state selection in a hexapole field. The rotational distribution of the scattered OH radicals by HCl was probed by saturated LIF spectroscopy of the 0-0 band of the A 2Sigma+ - X 2Pi transition. Relative state-to-state cross sections were measured for rotational excitations up to J=9/2 within the Omega=3/2 spin-orbit manifold and up to J=7/2 within the Omega=1/2 spin-orbit manifold. A propensity for spin-orbit conserving transitions was found, but no propensity for excitation into a particular Lambda-doublet component of the same rotational state was evident. The data are presented and discussed in comparison with results previously obtained for collisions of OH with CO (Ecoll=450 cm(-1)) and N2 (Ecoll=410 cm(-1)) and with new data we have measured for the OH+CO system at a comparable collision energy (Ecoll=985 cm(-1)). This comparison suggests that the potential energy surface (PES) governing the interaction between OH and HCl is more anisotropic than the PES's governing the intermolecular interaction of OH with CO and N2.
ISSN:0021-9606
1089-7690
DOI:10.1063/1.1846692