Numerical Model of Multiphase Flows Based on Sub-Cell Resolution of Fluid Interfaces

Compressible multiphase flows with resolved interfaces are numerically simulated. The Baer–Nunziato relaxation model, which is nonequilibrium with respect to velocity, pressure, and temperature, is used. The basic elements of the proposed approach are a simple model for local sub-cell reconstruction...

Full description

Saved in:
Bibliographic Details
Published inComputational mathematics and mathematical physics Vol. 62; no. 10; pp. 1723 - 1742
Main Authors Menshov, I. S., Serezhkin, A. A.
Format Journal Article
LanguageEnglish
Published Moscow Pleiades Publishing 01.10.2022
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Compressible multiphase flows with resolved interfaces are numerically simulated. The Baer–Nunziato relaxation model, which is nonequilibrium with respect to velocity, pressure, and temperature, is used. The basic elements of the proposed approach are a simple model for local sub-cell reconstruction of the interface near a cell face and the simulation of relaxation processes in mixed cells by solving the composite Riemann problem. Two approximate solutions of this problem are proposed that take into account the interaction of primary waves and the formation of secondary waves based on HLL- and HLLC-type Riemann solvers. The method does not require any special relaxation parameters and supports, in fact, a diffusion-free interface resolution, which is demonstrated by numerically solving test problems.
ISSN:0965-5425
1555-6662
DOI:10.1134/S096554252209010X