1H, 15N and 13C backbone and side‐chain assignments of reduced and S-nitrosated C62only mutant of human thioredoxin

Thioredoxins are ubiquitous and conserved small proteins. The redox-active site is composed of highly conserved Cys32 and Cys35. In higher eukaryotes, thioredoxin evolved to a gain of function in nitrosative control, with 3 extra cysteines, Cys62, Cys69, and Cys73. Human thioredoxin 1 (hTrx) is dire...

Full description

Saved in:
Bibliographic Details
Published inBiomolecular NMR assignments Vol. 15; no. 2; pp. 261 - 265
Main Authors Almeida, Vitor S., Iqbal, Anwar, Almeida, Fabio C. L.
Format Journal Article
LanguageEnglish
Published Dordrecht Springer Netherlands 01.10.2021
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Thioredoxins are ubiquitous and conserved small proteins. The redox-active site is composed of highly conserved Cys32 and Cys35. In higher eukaryotes, thioredoxin evolved to a gain of function in nitrosative control, with 3 extra cysteines, Cys62, Cys69, and Cys73. Human thioredoxin 1 (hTrx) is directly involved in cellular signal transduction through S-nitrosation. The understanding of the mechanism of S-nitrosation is essential. Here we produced a mutant of hTrx containing only Cys62 (C62only). We report the almost full 1H, 15N, and 13C chemical shift assignment of the reduced and S-nitrosated C62only. This study will help to measure the reactivity Cys62 toward S-nitrosants and the stability of S-nitrosated Cys62.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1874-2718
1874-270X
1874-270X
DOI:10.1007/s12104-021-10015-w