The brainstem esophagomotor network pattern generator: a rodent model
The evidence reviewed in this essay supports the following working model of the central function generator for esophageal peristalsis in the rat: solitarial subnucleus centralis (NTSc) neurons operate in a dual capacity as esophagomotor reflex interneurons and as command neurons programming respecti...
Saved in:
Published in | Dysphagia Vol. 8; no. 3; p. 203 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
United States
01.06.1993
|
Subjects | |
Online Access | Get more information |
Cover
Loading…
Summary: | The evidence reviewed in this essay supports the following working model of the central function generator for esophageal peristalsis in the rat: solitarial subnucleus centralis (NTSc) neurons operate in a dual capacity as esophagomotor reflex interneurons and as command neurons programming respective outputs from nucleus ambiguus compact formation (AMBc) motoneurons during secondary and primary peristalsis. In both conditions, there is a critical requirement for cholinergic input which enables NTSc neurons to generate the timed sequence of AMBc motoneuronal activity. In primary peristalsis, the cholinergic coupling mechanism is activated centrally, probably via projections from deglutitive premotor neurons to the parvicellular reticular formation and thence to the NTS. In reflex (or secondary) peristalsis, the cholinergic input could in part be generated by cholinergic vagal viscerosensory fibers innervating the esophagus. Postulated connections between NTS deglutitive neurons and the parvicellular cholinergic neurons of the intermediate reticular formation have yet to be demonstrated. Premotor input from NTSc to AMBc is generated by somatostatinergic and excitatory aminoacidergic neurons. Coactivation of both inputs by cholinergic afferents is necessary to generate esophagomotor output from AMBc neurons. The model under study is derived from investigations into central mechanisms governing striated muscle peristaltic activity. Whether the basic operational principles revealed thus far apply to peristaltic pattern generation in species with a smooth muscle esophagus, requires further investigation. |
---|---|
ISSN: | 0179-051X |
DOI: | 10.1007/BF01354539 |