Pressurized hot water extraction of 10-deacetylbaccatin III from yew for industrial application
In this study a systematic and model-based approach for a process development focusing on pressurized hot water extraction (PHWE) is investigated, considering potential thermal degradation of high-value compounds. For extraction of 10-deacetylbaccatin III (10-DAB) from yew as a representative test s...
Saved in:
Published in | Resource-Efficient Technologies Vol. 3; no. 2; pp. 177 - 186 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.06.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | In this study a systematic and model-based approach for a process development focusing on pressurized hot water extraction (PHWE) is investigated, considering potential thermal degradation of high-value compounds. For extraction of 10-deacetylbaccatin III (10-DAB) from yew as a representative test system, water at 120 °C provided the best compromise between extraction yield and thermal degradation. A yield of almost 100% with regard to the overall amount of 10-DAB was reached in only 20 min. Each experiment for model parameter determination was carried out with 1.9 g of plant material at a flowrate of 1 mL/min and an applied pressure of 11 bar. All experimental values are assessed by a physico-chemical (rigorous) extraction model with experimental values and simulation results showing high conformity. In order to demonstrate the usability of the extraction model and model parameter determination a scale-up prediction was calculated. The scale-up experiments were predicted precisely and thus the model validated. The experiments and the simulation results for a column with a volume of 104 mL and a mass of 22 g yew needles were consistent with the milli-scale used for model parameter determination. |
---|---|
ISSN: | 2405-6537 |
DOI: | 10.1016/j.reffit.2017.03.007 |