Kinetics and mechanism of isomerization of cyclosporin A
The kinetics of isomerization of cyclosporin A to isocyclosporin A were studied in various nonaqueous solvents as a function of temperature and added methanesulfonic acid. The rate of isomerization was found to be acid-catalyzed over the acid concentration range studied. The choice of organic solven...
Saved in:
Published in | Pharmaceutical research Vol. 9; no. 5; p. 617 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
01.05.1992
|
Subjects | |
Online Access | Get more information |
Cover
Loading…
Summary: | The kinetics of isomerization of cyclosporin A to isocyclosporin A were studied in various nonaqueous solvents as a function of temperature and added methanesulfonic acid. The rate of isomerization was found to be acid-catalyzed over the acid concentration range studied. The choice of organic solvent significantly altered the rate of isomerization. For a series of alcohols, the rate was enhanced with increasing dielectric constant of the media, however, this correlation did not hold upon introduction of the dipolar aprotic solvent, tetrahydrofuran. Conversion of cyclosporin A to isocyclosporin A in tetrahydrofuran was found to contain diminished side reactions as compared to alcoholic solvents. The rate of conversion of isocyclosporin A to cyclosporin A was determined in aqueous buffers as a function of pH, buffer concentration, and temperature. The rates of conversion were extremely rapid compared to the forward reaction. Based on the pH dependencies of dilute solution reactivities, isocyclosporin A displayed a kinetically generated pKa value of 6.9 for the secondary amine moiety. From pH 8 to pH 10 the pH-rate profile plot is linear, with a slope approximately equal to unity, indicating apparent hydroxide ion catalysis. The break in pH-rate profile suggests a change in the rate-determining step upon protonation of isocyclosporin A. The rate of isomerization in plasma was comparable with that found in a pH 7.4 buffer solution, indicating that plasma proteins do not significantly alter the isomerization kinetics of isocyclosporin A to cyclosporin A. |
---|---|
ISSN: | 0724-8741 |
DOI: | 10.1023/A:1015841824760 |