A 2.66 µW Clinician-Like Cardiac Arrhythmia Watchdog Based on P-QRS-T for Wearable Applications
A wearable electrocardiogram (ECG) device is an effective tool for managing cardiovascular diseases. This paper presents a low power clinician-like cardiac arrhythmia watchdog (CAW) for wearable ECG devices. The CAW is based on a novel P-QRS-T detection algorithm that makes use of clinical features...
Saved in:
Published in | IEEE transactions on biomedical circuits and systems Vol. 16; no. 5; pp. 793 - 806 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.10.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | A wearable electrocardiogram (ECG) device is an effective tool for managing cardiovascular diseases. This paper presents a low power clinician-like cardiac arrhythmia watchdog (CAW) for wearable ECG devices. The CAW is based on a novel P-QRS-T detection algorithm that makes use of clinical features to identify abnormalities. Implemented in 0.18 μm CMOS process, the CAW consumes 2.66 µW for 80 bpm heart rate at 1.2 V supply with an area of 0.578 mm 2 . Verified on QT database, the average sensitivity/positive predictivity for P-wave, QRS complex and T-wave are over 93.39%/88.55%, 99.69%/99.48%, and 97.13%/93.18% respectively, across over 190000 beats. It shows over 99.8% arrhythmia detection accuracy for 43 subjects evaluated on MIT-BIH database. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ISSN: | 1932-4545 1940-9990 1940-9990 |
DOI: | 10.1109/TBCAS.2022.3184971 |