Multi-atlas label fusion by using supervised local weighting for brain image segmentation

The automatic segmentation of interest structures is devoted to the morphological analysis of brain magnetic resonance imaging volumes. It demands significant efforts due to its complicated shapes and since it lacks contrast between tissues and intersubject anatomical variability. One aspect that re...

Full description

Saved in:
Bibliographic Details
Published inTecno - Lógicas (Instituto Tecnológico Metropolitano) Vol. 20; no. 39; pp. 209 - 225
Main Authors Cárdenas-Peña, David, Fernández, Eduardo, Ferrández-Vicente, José M., Castellanos-Domínguez, German
Format Journal Article
LanguageEnglish
Published Instituto Tecnológico Metropolitano 02.05.2017
Subjects
Online AccessGet full text
ISSN0123-7799
2256-5337
2256-5337
DOI10.22430/22565337.724

Cover

Loading…
Abstract The automatic segmentation of interest structures is devoted to the morphological analysis of brain magnetic resonance imaging volumes. It demands significant efforts due to its complicated shapes and since it lacks contrast between tissues and intersubject anatomical variability. One aspect that reduces the accuracy of the multi-atlasbased segmentation is the label fusion assumption of one-to-one correspondences between targets and atlas voxels. To improve the performance of brain image segmentation, label fusion approaches include spatial and intensity information by using voxel-wise weighted voting strategies. Although the weights are assessed for a predefined atlas set, they are not very efficient for labeling intricate structures since most tissue shapes are not uniformly distributed in the images. This paper proposes a methodology of voxel-wise feature extraction based on the linear combination of patch intensities. As far as we are concerned, this is the first attempt to locally learn the features by maximizing the centered kernel alignment function. Our methodology aims to build discriminative representations, deal with complex structures, and reduce the image artifacts. The result is an enhanced patch-based segmentation of brain images. For validation, the proposed brain image segmentation approach is compared against Bayesian-based and patch-wise label fusion on three different brain image datasets. In terms of the determined Dice similarity index, our proposal shows the highest segmentation accuracy (90.3% on average); it presents sufficient artifact robustness, and provides suitable repeatability of the segmentation results.
AbstractList The automatic segmentation of interest structures is devoted to the morphological analysis of brain magnetic resonance imaging volumes. It demands significant efforts due to its complicated shapes and since it lacks contrast between tissues and inter-subject anatomical variability. One aspect that reduces the accuracy of the multi-atlas-based segmentation is the label fusion assumption of one-to-one correspondences between targets and atlas voxels. To improve the performance of brain image segmentation, label fusion approaches include spatial and intensity information by using voxel-wise weighted voting strategies. Although the weights are assessed for a predefined atlas set, they are not very efficient for labeling intricate structures since most tissue shapes are not uniformly distributed in the images. This paper proposes a methodology of voxel-wise feature extraction based on the linear combination of patch intensities. As far as we are concerned, this is the first attempt to locally learn the features by maximizing the centered kernel alignment function. Our methodology aims to build discriminative representations, deal with complex structures, and reduce the image artifacts. The result is an enhanced patch-based segmentation of brain images. For validation, the proposed brain image segmentation approach is compared against Bayesian-based and patch-wise label fusion on three different brain image datasets. In terms of the determined Dice similarity index, our proposal shows the highest segmentation accuracy (90.3% on average); it presents sufficient artifact robustness, and provides suitable repeatability of the segmentation results. La segmentación automática de estructuras de interés en imágenes de resonancia magnética cerebral requiere esfuerzos significantes, debido a las formas complicadas, el bajo contraste y la variabilidad anatómica. Un aspecto que reduce el desempeño de la segmentación basada en múltiples atlas es la suposición de correspondencias uno-a-uno entre los voxeles objetivo y los del atlas. Para mejorar el desempeño de la segmentación, las metodologías de fusión de etiquetas incluyen información espacial y de intensidad a través de estrategias de votación ponderada a nivel de voxel. Aunque los pesos se calculan para un conjunto de atlas predefinido, estos no son muy eficientes en etiquetar estructuras intrincadas, ya que la mayoría de las formas de los tejidos no se distribuyen uniformemente en las imágenes. Este artículo propone una metodología de extracción de características a nivel de voxel basado en la combinación lineal de las intensidades de un parche. Hasta el momento, este es el primer intento de extraer características locales maximizando la función de alineamiento de kernel centralizado, buscando construir representaciones discriminativas, superar la complejidad de las estructuras, y reducir la influencia de los artefactos. Para validar los resultados, la estrategia de segmentación propuesta se compara contra la segmentación Bayesiana y la fusión de etiquetas basada en parches en tres bases de datos diferentes. Respecto del índice de similitud Dice, nuestra propuesta alcanza el más alto acierto (90.3% en promedio) con suficiente robusticidad ante los artefactos y respetabilidad apropiada.
The automatic segmentation of interest structures is devoted to the morphological analysis of brain magnetic resonance imaging volumes. It demands significant efforts due to its complicated shapes and since it lacks contrast between tissues and intersubject anatomical variability. One aspect that reduces the accuracy of the multi-atlasbased segmentation is the label fusion assumption of one-to-one correspondences between targets and atlas voxels. To improve the performance of brain image segmentation, label fusion approaches include spatial and intensity information by using voxel-wise weighted voting strategies. Although the weights are assessed for a predefined atlas set, they are not very efficient for labeling intricate structures since most tissue shapes are not uniformly distributed in the images. This paper proposes a methodology of voxel-wise feature extraction based on the linear combination of patch intensities. As far as we are concerned, this is the first attempt to locally learn the features by maximizing the centered kernel alignment function. Our methodology aims to build discriminative representations, deal with complex structures, and reduce the image artifacts. The result is an enhanced patch-based segmentation of brain images. For validation, the proposed brain image segmentation approach is compared against Bayesian-based and patch-wise label fusion on three different brain image datasets. In terms of the determined Dice similarity index, our proposal shows the highest segmentation accuracy (90.3% on average); it presents sufficient artifact robustness, and provides suitable repeatability of the segmentation results.
Author Cárdenas-Peña, David
Ferrández-Vicente, José M.
Fernández, Eduardo
Castellanos-Domínguez, German
Author_xml – sequence: 1
  givenname: David
  surname: Cárdenas-Peña
  fullname: Cárdenas-Peña, David
– sequence: 2
  givenname: Eduardo
  surname: Fernández
  fullname: Fernández, Eduardo
– sequence: 3
  givenname: José M.
  surname: Ferrández-Vicente
  fullname: Ferrández-Vicente, José M.
– sequence: 4
  givenname: German
  surname: Castellanos-Domínguez
  fullname: Castellanos-Domínguez, German
BookMark eNpVkU9rHDEMxU1JoZttjr37C0zqf-NZQy8hNM1CQqCkh56MbMtTL8442LMN-faZTbaFnKQn8X4IvVNyMpUJCfnC2bkQSrKvQvS6l3I4H4T6QFYH2R30CVkxLmQ3DMZ8Imet7RhjXCrRK7Uiv2_3eU4dzBkazeAw07hvqUzUPdOlmUba9o9Y_6aGgebiIdMnTOOf-bCKpVJXIU00PcCItOH4gNMM8wL4TD5GyA3PjnVNfl19v7-87m7ufmwvL246z41W3YYHBctFgUkvudfabJiJGoYhmn6jecQAPAyDdsh18NEHcIAI0qsenXByTbZv3FBgZx_rckl9tgWSfR2UOlqoc_IZLXghJETGotZKiAhOhQWogjPahGgW1rcjK0GecH6PO872U6qp7MBisxc_7w_fFNyoJYQ16d7svpbWKsb_fs7sa0r2X0p2SUm-AKIIiHo
ContentType Journal Article
Copyright LICENCIA DE USO: Los documentos a texto completo incluidos en Dialnet son de acceso libre y propiedad de sus autores y/o editores. Por tanto, cualquier acto de reproducción, distribución, comunicación pública y/o transformación total o parcial requiere el consentimiento expreso y escrito de aquéllos. Cualquier enlace al texto completo de estos documentos deberá hacerse a través de la URL oficial de éstos en Dialnet. Más información: https://dialnet.unirioja.es/info/derechosOAI | INTELLECTUAL PROPERTY RIGHTS STATEMENT: Full text documents hosted by Dialnet are protected by copyright and/or related rights. This digital object is accessible without charge, but its use is subject to the licensing conditions set by its authors or editors. Unless expressly stated otherwise in the licensing conditions, you are free to linking, browsing, printing and making a copy for your own personal purposes. All other acts of reproduction and communication to the public are subject to the licensing conditions expressed by editors and authors and require consent from them. Any link to this document should be made using its official URL in Dialnet. More info: https://dialnet.unirioja.es/info/derechosOAI
Copyright_xml – notice: LICENCIA DE USO: Los documentos a texto completo incluidos en Dialnet son de acceso libre y propiedad de sus autores y/o editores. Por tanto, cualquier acto de reproducción, distribución, comunicación pública y/o transformación total o parcial requiere el consentimiento expreso y escrito de aquéllos. Cualquier enlace al texto completo de estos documentos deberá hacerse a través de la URL oficial de éstos en Dialnet. Más información: https://dialnet.unirioja.es/info/derechosOAI | INTELLECTUAL PROPERTY RIGHTS STATEMENT: Full text documents hosted by Dialnet are protected by copyright and/or related rights. This digital object is accessible without charge, but its use is subject to the licensing conditions set by its authors or editors. Unless expressly stated otherwise in the licensing conditions, you are free to linking, browsing, printing and making a copy for your own personal purposes. All other acts of reproduction and communication to the public are subject to the licensing conditions expressed by editors and authors and require consent from them. Any link to this document should be made using its official URL in Dialnet. More info: https://dialnet.unirioja.es/info/derechosOAI
DBID AAYXX
CITATION
AGMXS
FKZ
DOA
DOI 10.22430/22565337.724
DatabaseName CrossRef
Dialnet (Open Access Full Text)
Dialnet
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2256-5337
EndPage 225
ExternalDocumentID oai_doaj_org_article_ac223af00f66422fab4dfcd4db969df9
oai_dialnet_unirioja_es_ART0001219424
10_22430_22565337_724
GroupedDBID 5VS
AAYXX
ABXHO
ADBBV
ADMLS
AFKRA
ALMA_UNASSIGNED_HOLDINGS
APOWU
ARAPS
AZFZN
B14
BCNDV
BENPR
BGLVJ
CCPQU
CITATION
FAEIB
GROUPED_DOAJ
HCIFZ
KQ8
MK~
OK1
PHGZM
PHGZT
PIMPY
RNS
RTK
SCD
TUS
AGMXS
FKZ
IPNFZ
M~E
RIG
PQGLB
PUEGO
ID FETCH-LOGICAL-c1964-81d4a000d03c31c669809f6a77f95861feda1d776be16dcfcdabaeea3c45eb2b3
IEDL.DBID DOA
ISSN 0123-7799
2256-5337
IngestDate Wed Aug 27 01:30:07 EDT 2025
Thu Jul 20 13:41:21 EDT 2023
Tue Jul 01 01:23:11 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 39
Language English
License https://creativecommons.org/licenses/by/3.0/deed.es_ES
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c1964-81d4a000d03c31c669809f6a77f95861feda1d776be16dcfcdabaeea3c45eb2b3
OpenAccessLink https://doaj.org/article/ac223af00f66422fab4dfcd4db969df9
PageCount 17
ParticipantIDs doaj_primary_oai_doaj_org_article_ac223af00f66422fab4dfcd4db969df9
dialnet_primary_oai_dialnet_unirioja_es_ART0001219424
crossref_primary_10_22430_22565337_724
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-05-02
PublicationDateYYYYMMDD 2017-05-02
PublicationDate_xml – month: 05
  year: 2017
  text: 2017-05-02
  day: 02
PublicationDecade 2010
PublicationTitle Tecno - Lógicas (Instituto Tecnológico Metropolitano)
PublicationYear 2017
Publisher Instituto Tecnológico Metropolitano
Publisher_xml – name: Instituto Tecnológico Metropolitano
SSID ssj0001342544
Score 1.9883375
Snippet The automatic segmentation of interest structures is devoted to the morphological analysis of brain magnetic resonance imaging volumes. It demands significant...
SourceID doaj
dialnet
crossref
SourceType Open Website
Index Database
StartPage 209
SubjectTerms atlas segmentation
Brain image segmentation
fusión de etiquetas
label fusion
multi
multi-atlas segmentation
segmentación con múltiples atlas
Segmentación de imágenes cerebrales
Title Multi-atlas label fusion by using supervised local weighting for brain image segmentation
URI https://dialnet.unirioja.es/servlet/oaiart?codigo=6119734
https://doaj.org/article/ac223af00f66422fab4dfcd4db969df9
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NS8QwEA2iCHoQP_GbHMRbtWnSdHNUUURQRBT0VCbJRFa0iruL-O-dpF3ZPXnxmialfZ1m3gwzL4wdQC4CCNvLwApFAYrHzBrpssIJCz0AUcnYO3x9oy8f1NVj-Thx1FesCWvlgVvgjsGRA4OQ50ETVS4CWOWD88pbo40PqXWPfN5EMJWyK1JF7a1Uv1hIopDGtAKb5LFkfkxGrInnVEdVoaYc0nzs1mhwOKXgn1zNxTJb6jgiP2mfbYXNYLPKFieUA9fYU2qczWBI5JfTh8RXHkYx8cXtN4-17M98MPqI-8AAPU8Oi3-lLGi8RESV23g2BO-_0X7CB_j81vUgNevs4eL8_uwy605JyFwU08qIcCqgV_a5dFI4rU0vN0FDVQVT9rQI6EH4qtIWhfaOsAMLiCCdKimstnKDzTbvDW4yjsIFpAiishIV_Y-GppncWSJBBRpTbrHDMVT1RyuGUVMQkTCtx5jWhOkWKzsgf-dFGevx2Kjpf_bfX6DGQU20PWXDhFFx3WmEfXpRHCCLqDuLqP-yiO3_uMkOWyiiA4-ljcUumx1-jnCP6MfQ7rO50_Ob27v9ZHE_GUzb6g
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-atlas+label+fusion+by+using+supervised+local+weighting+for+brain+image+segmentation&rft.jtitle=Tecno+-+L%C3%B3gicas+%28Instituto+Tecnol%C3%B3gico+Metropolitano%29&rft.au=D.+C%C3%A1rdenas-Pe%C3%B1a&rft.au=E.+Fern%C3%A1ndez&rft.au=Jos%C3%A9+M.+Ferr%C3%A1ndez-Vicente&rft.au=G.+Castellanos-Dom%C3%ADnguez&rft.date=2017-05-02&rft.pub=Instituto+Tecnol%C3%B3gico+Metropolitano&rft.issn=0123-7799&rft.eissn=2256-5337&rft.volume=20&rft.issue=39&rft_id=info:doi/10.22430%2F22565337.724&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_ac223af00f66422fab4dfcd4db969df9
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0123-7799&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0123-7799&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0123-7799&client=summon