Multi-atlas label fusion by using supervised local weighting for brain image segmentation
The automatic segmentation of interest structures is devoted to the morphological analysis of brain magnetic resonance imaging volumes. It demands significant efforts due to its complicated shapes and since it lacks contrast between tissues and intersubject anatomical variability. One aspect that re...
Saved in:
Published in | Tecno - Lógicas (Instituto Tecnológico Metropolitano) Vol. 20; no. 39; pp. 209 - 225 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Instituto Tecnológico Metropolitano
02.05.2017
|
Subjects | |
Online Access | Get full text |
ISSN | 0123-7799 2256-5337 2256-5337 |
DOI | 10.22430/22565337.724 |
Cover
Loading…
Abstract | The automatic segmentation of interest structures is devoted to the morphological analysis of brain magnetic resonance imaging volumes. It demands significant efforts due to its complicated shapes and since it lacks contrast between tissues and intersubject anatomical variability. One aspect that reduces the accuracy of the multi-atlasbased segmentation is the label fusion assumption of one-to-one correspondences between targets and atlas voxels. To improve the performance of brain image segmentation, label fusion approaches include spatial and intensity information by using voxel-wise weighted voting strategies. Although the weights are assessed for a predefined atlas set, they are not very efficient for labeling intricate structures since most tissue shapes are not uniformly distributed in the images. This paper proposes a methodology of voxel-wise feature extraction based on the linear combination of patch intensities. As far as we are concerned, this is the first attempt to locally learn the features by maximizing the centered kernel alignment function. Our methodology aims to build discriminative representations, deal with complex structures, and reduce the image artifacts. The result is an enhanced patch-based segmentation of brain images. For validation, the proposed brain image segmentation approach is compared against Bayesian-based and patch-wise label fusion on three different brain image datasets. In terms of the determined Dice similarity index, our proposal shows the highest segmentation accuracy (90.3% on average); it presents sufficient artifact robustness, and provides suitable repeatability of the segmentation results. |
---|---|
AbstractList | The automatic segmentation of interest structures is devoted to the morphological analysis of brain magnetic resonance imaging volumes. It demands significant efforts due to its complicated shapes and since it lacks contrast between tissues and inter-subject anatomical variability. One aspect that reduces the accuracy of the multi-atlas-based segmentation is the label fusion assumption of one-to-one correspondences between targets and atlas voxels. To improve the performance of brain image segmentation, label fusion approaches include spatial and intensity information by using voxel-wise weighted voting strategies. Although the weights are assessed for a predefined atlas set, they are not very efficient for labeling intricate structures since most tissue shapes are not uniformly distributed in the images. This paper proposes a methodology of voxel-wise feature extraction based on the linear combination of patch intensities. As far as we are concerned, this is the first attempt to locally learn the features by maximizing the centered kernel alignment function. Our methodology aims to build discriminative representations, deal with complex structures, and reduce the image artifacts. The result is an enhanced patch-based segmentation of brain images. For validation, the proposed brain image segmentation approach is compared against Bayesian-based and patch-wise label fusion on three different brain image datasets. In terms of the determined Dice similarity index, our proposal shows the highest segmentation accuracy (90.3% on average); it presents sufficient artifact robustness, and provides suitable repeatability of the segmentation results.
La segmentación automática de estructuras de interés en imágenes de resonancia magnética cerebral requiere esfuerzos significantes, debido a las formas complicadas, el bajo contraste y la variabilidad anatómica. Un aspecto que reduce el desempeño de la segmentación basada en múltiples atlas es la suposición de correspondencias uno-a-uno entre los voxeles objetivo y los del atlas. Para mejorar el desempeño de la segmentación, las metodologías de fusión de etiquetas incluyen información espacial y de intensidad a través de estrategias de votación ponderada a nivel de voxel. Aunque los pesos se calculan para un conjunto de atlas predefinido, estos no son muy eficientes en etiquetar estructuras intrincadas, ya que la mayoría de las formas de los tejidos no se distribuyen uniformemente en las imágenes. Este artículo propone una metodología de extracción de características a nivel de voxel basado en la combinación lineal de las intensidades de un parche. Hasta el momento, este es el primer intento de extraer características locales maximizando la función de alineamiento de kernel centralizado, buscando construir representaciones discriminativas, superar la complejidad de las estructuras, y reducir la influencia de los artefactos. Para validar los resultados, la estrategia de segmentación propuesta se compara contra la segmentación Bayesiana y la fusión de etiquetas basada en parches en tres bases de datos diferentes. Respecto del índice de similitud Dice, nuestra propuesta alcanza el más alto acierto (90.3% en promedio) con suficiente robusticidad ante los artefactos y respetabilidad apropiada. The automatic segmentation of interest structures is devoted to the morphological analysis of brain magnetic resonance imaging volumes. It demands significant efforts due to its complicated shapes and since it lacks contrast between tissues and intersubject anatomical variability. One aspect that reduces the accuracy of the multi-atlasbased segmentation is the label fusion assumption of one-to-one correspondences between targets and atlas voxels. To improve the performance of brain image segmentation, label fusion approaches include spatial and intensity information by using voxel-wise weighted voting strategies. Although the weights are assessed for a predefined atlas set, they are not very efficient for labeling intricate structures since most tissue shapes are not uniformly distributed in the images. This paper proposes a methodology of voxel-wise feature extraction based on the linear combination of patch intensities. As far as we are concerned, this is the first attempt to locally learn the features by maximizing the centered kernel alignment function. Our methodology aims to build discriminative representations, deal with complex structures, and reduce the image artifacts. The result is an enhanced patch-based segmentation of brain images. For validation, the proposed brain image segmentation approach is compared against Bayesian-based and patch-wise label fusion on three different brain image datasets. In terms of the determined Dice similarity index, our proposal shows the highest segmentation accuracy (90.3% on average); it presents sufficient artifact robustness, and provides suitable repeatability of the segmentation results. |
Author | Cárdenas-Peña, David Ferrández-Vicente, José M. Fernández, Eduardo Castellanos-Domínguez, German |
Author_xml | – sequence: 1 givenname: David surname: Cárdenas-Peña fullname: Cárdenas-Peña, David – sequence: 2 givenname: Eduardo surname: Fernández fullname: Fernández, Eduardo – sequence: 3 givenname: José M. surname: Ferrández-Vicente fullname: Ferrández-Vicente, José M. – sequence: 4 givenname: German surname: Castellanos-Domínguez fullname: Castellanos-Domínguez, German |
BookMark | eNpVkU9rHDEMxU1JoZttjr37C0zqf-NZQy8hNM1CQqCkh56MbMtTL8442LMN-faZTbaFnKQn8X4IvVNyMpUJCfnC2bkQSrKvQvS6l3I4H4T6QFYH2R30CVkxLmQ3DMZ8Imet7RhjXCrRK7Uiv2_3eU4dzBkazeAw07hvqUzUPdOlmUba9o9Y_6aGgebiIdMnTOOf-bCKpVJXIU00PcCItOH4gNMM8wL4TD5GyA3PjnVNfl19v7-87m7ufmwvL246z41W3YYHBctFgUkvudfabJiJGoYhmn6jecQAPAyDdsh18NEHcIAI0qsenXByTbZv3FBgZx_rckl9tgWSfR2UOlqoc_IZLXghJETGotZKiAhOhQWogjPahGgW1rcjK0GecH6PO872U6qp7MBisxc_7w_fFNyoJYQ16d7svpbWKsb_fs7sa0r2X0p2SUm-AKIIiHo |
ContentType | Journal Article |
Copyright | LICENCIA DE USO: Los documentos a texto completo incluidos en Dialnet son de acceso libre y propiedad de sus autores y/o editores. Por tanto, cualquier acto de reproducción, distribución, comunicación pública y/o transformación total o parcial requiere el consentimiento expreso y escrito de aquéllos. Cualquier enlace al texto completo de estos documentos deberá hacerse a través de la URL oficial de éstos en Dialnet. Más información: https://dialnet.unirioja.es/info/derechosOAI | INTELLECTUAL PROPERTY RIGHTS STATEMENT: Full text documents hosted by Dialnet are protected by copyright and/or related rights. This digital object is accessible without charge, but its use is subject to the licensing conditions set by its authors or editors. Unless expressly stated otherwise in the licensing conditions, you are free to linking, browsing, printing and making a copy for your own personal purposes. All other acts of reproduction and communication to the public are subject to the licensing conditions expressed by editors and authors and require consent from them. Any link to this document should be made using its official URL in Dialnet. More info: https://dialnet.unirioja.es/info/derechosOAI |
Copyright_xml | – notice: LICENCIA DE USO: Los documentos a texto completo incluidos en Dialnet son de acceso libre y propiedad de sus autores y/o editores. Por tanto, cualquier acto de reproducción, distribución, comunicación pública y/o transformación total o parcial requiere el consentimiento expreso y escrito de aquéllos. Cualquier enlace al texto completo de estos documentos deberá hacerse a través de la URL oficial de éstos en Dialnet. Más información: https://dialnet.unirioja.es/info/derechosOAI | INTELLECTUAL PROPERTY RIGHTS STATEMENT: Full text documents hosted by Dialnet are protected by copyright and/or related rights. This digital object is accessible without charge, but its use is subject to the licensing conditions set by its authors or editors. Unless expressly stated otherwise in the licensing conditions, you are free to linking, browsing, printing and making a copy for your own personal purposes. All other acts of reproduction and communication to the public are subject to the licensing conditions expressed by editors and authors and require consent from them. Any link to this document should be made using its official URL in Dialnet. More info: https://dialnet.unirioja.es/info/derechosOAI |
DBID | AAYXX CITATION AGMXS FKZ DOA |
DOI | 10.22430/22565337.724 |
DatabaseName | CrossRef Dialnet (Open Access Full Text) Dialnet DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2256-5337 |
EndPage | 225 |
ExternalDocumentID | oai_doaj_org_article_ac223af00f66422fab4dfcd4db969df9 oai_dialnet_unirioja_es_ART0001219424 10_22430_22565337_724 |
GroupedDBID | 5VS AAYXX ABXHO ADBBV ADMLS AFKRA ALMA_UNASSIGNED_HOLDINGS APOWU ARAPS AZFZN B14 BCNDV BENPR BGLVJ CCPQU CITATION FAEIB GROUPED_DOAJ HCIFZ KQ8 MK~ OK1 PHGZM PHGZT PIMPY RNS RTK SCD TUS AGMXS FKZ IPNFZ M~E RIG PQGLB PUEGO |
ID | FETCH-LOGICAL-c1964-81d4a000d03c31c669809f6a77f95861feda1d776be16dcfcdabaeea3c45eb2b3 |
IEDL.DBID | DOA |
ISSN | 0123-7799 2256-5337 |
IngestDate | Wed Aug 27 01:30:07 EDT 2025 Thu Jul 20 13:41:21 EDT 2023 Tue Jul 01 01:23:11 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 39 |
Language | English |
License | https://creativecommons.org/licenses/by/3.0/deed.es_ES |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c1964-81d4a000d03c31c669809f6a77f95861feda1d776be16dcfcdabaeea3c45eb2b3 |
OpenAccessLink | https://doaj.org/article/ac223af00f66422fab4dfcd4db969df9 |
PageCount | 17 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_ac223af00f66422fab4dfcd4db969df9 dialnet_primary_oai_dialnet_unirioja_es_ART0001219424 crossref_primary_10_22430_22565337_724 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-05-02 |
PublicationDateYYYYMMDD | 2017-05-02 |
PublicationDate_xml | – month: 05 year: 2017 text: 2017-05-02 day: 02 |
PublicationDecade | 2010 |
PublicationTitle | Tecno - Lógicas (Instituto Tecnológico Metropolitano) |
PublicationYear | 2017 |
Publisher | Instituto Tecnológico Metropolitano |
Publisher_xml | – name: Instituto Tecnológico Metropolitano |
SSID | ssj0001342544 |
Score | 1.9883375 |
Snippet | The automatic segmentation of interest structures is devoted to the morphological analysis of brain magnetic resonance imaging volumes. It demands significant... |
SourceID | doaj dialnet crossref |
SourceType | Open Website Index Database |
StartPage | 209 |
SubjectTerms | atlas segmentation Brain image segmentation fusión de etiquetas label fusion multi multi-atlas segmentation segmentación con múltiples atlas Segmentación de imágenes cerebrales |
Title | Multi-atlas label fusion by using supervised local weighting for brain image segmentation |
URI | https://dialnet.unirioja.es/servlet/oaiart?codigo=6119734 https://doaj.org/article/ac223af00f66422fab4dfcd4db969df9 |
Volume | 20 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NS8QwEA2iCHoQP_GbHMRbtWnSdHNUUURQRBT0VCbJRFa0iruL-O-dpF3ZPXnxmialfZ1m3gwzL4wdQC4CCNvLwApFAYrHzBrpssIJCz0AUcnYO3x9oy8f1NVj-Thx1FesCWvlgVvgjsGRA4OQ50ETVS4CWOWD88pbo40PqXWPfN5EMJWyK1JF7a1Uv1hIopDGtAKb5LFkfkxGrInnVEdVoaYc0nzs1mhwOKXgn1zNxTJb6jgiP2mfbYXNYLPKFieUA9fYU2qczWBI5JfTh8RXHkYx8cXtN4-17M98MPqI-8AAPU8Oi3-lLGi8RESV23g2BO-_0X7CB_j81vUgNevs4eL8_uwy605JyFwU08qIcCqgV_a5dFI4rU0vN0FDVQVT9rQI6EH4qtIWhfaOsAMLiCCdKimstnKDzTbvDW4yjsIFpAiishIV_Y-GppncWSJBBRpTbrHDMVT1RyuGUVMQkTCtx5jWhOkWKzsgf-dFGevx2Kjpf_bfX6DGQU20PWXDhFFx3WmEfXpRHCCLqDuLqP-yiO3_uMkOWyiiA4-ljcUumx1-jnCP6MfQ7rO50_Ob27v9ZHE_GUzb6g |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-atlas+label+fusion+by+using+supervised+local+weighting+for+brain+image+segmentation&rft.jtitle=Tecno+-+L%C3%B3gicas+%28Instituto+Tecnol%C3%B3gico+Metropolitano%29&rft.au=D.+C%C3%A1rdenas-Pe%C3%B1a&rft.au=E.+Fern%C3%A1ndez&rft.au=Jos%C3%A9+M.+Ferr%C3%A1ndez-Vicente&rft.au=G.+Castellanos-Dom%C3%ADnguez&rft.date=2017-05-02&rft.pub=Instituto+Tecnol%C3%B3gico+Metropolitano&rft.issn=0123-7799&rft.eissn=2256-5337&rft.volume=20&rft.issue=39&rft_id=info:doi/10.22430%2F22565337.724&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_ac223af00f66422fab4dfcd4db969df9 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0123-7799&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0123-7799&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0123-7799&client=summon |