Multi-atlas label fusion by using supervised local weighting for brain image segmentation

The automatic segmentation of interest structures is devoted to the morphological analysis of brain magnetic resonance imaging volumes. It demands significant efforts due to its complicated shapes and since it lacks contrast between tissues and intersubject anatomical variability. One aspect that re...

Full description

Saved in:
Bibliographic Details
Published inTecno - Lógicas (Instituto Tecnológico Metropolitano) Vol. 20; no. 39; pp. 209 - 225
Main Authors Cárdenas-Peña, David, Fernández, Eduardo, Ferrández-Vicente, José M., Castellanos-Domínguez, German
Format Journal Article
LanguageEnglish
Published Instituto Tecnológico Metropolitano 02.05.2017
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The automatic segmentation of interest structures is devoted to the morphological analysis of brain magnetic resonance imaging volumes. It demands significant efforts due to its complicated shapes and since it lacks contrast between tissues and intersubject anatomical variability. One aspect that reduces the accuracy of the multi-atlasbased segmentation is the label fusion assumption of one-to-one correspondences between targets and atlas voxels. To improve the performance of brain image segmentation, label fusion approaches include spatial and intensity information by using voxel-wise weighted voting strategies. Although the weights are assessed for a predefined atlas set, they are not very efficient for labeling intricate structures since most tissue shapes are not uniformly distributed in the images. This paper proposes a methodology of voxel-wise feature extraction based on the linear combination of patch intensities. As far as we are concerned, this is the first attempt to locally learn the features by maximizing the centered kernel alignment function. Our methodology aims to build discriminative representations, deal with complex structures, and reduce the image artifacts. The result is an enhanced patch-based segmentation of brain images. For validation, the proposed brain image segmentation approach is compared against Bayesian-based and patch-wise label fusion on three different brain image datasets. In terms of the determined Dice similarity index, our proposal shows the highest segmentation accuracy (90.3% on average); it presents sufficient artifact robustness, and provides suitable repeatability of the segmentation results.
ISSN:0123-7799
2256-5337
2256-5337
DOI:10.22430/22565337.724