Design of Real Time Image Processing Machine for Carrot Classification
Kasınhanı district of Konya province has the greatest carrot production in Turkey. By the year 2017, Konya Province has approximately 46.5% of carrot production areas and 59.7% of total production. There are several washing and packing facilities in the region. These facilities show totally similar...
Saved in:
Published in | Yüzüncü Yıl Üniversitesi Tarım Bilimleri Dergisi Vol. 30; no. 2; pp. 355 - 366 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
30.06.2020
|
Online Access | Get full text |
Cover
Loading…
Summary: | Kasınhanı district of Konya province has the greatest carrot production in Turkey. By the year 2017, Konya Province has approximately 46.5% of carrot production areas and 59.7% of total production. There are several washing and packing facilities in the region. These facilities show totally similar features and fully satisfy the needs of the region. Carrots coming from the washing pools come firstly to the mechanical grading machines and then to the packing department or directly to the packing department in some facilities. Grading and packing processes are carried out manually in these facilities. The classification efficiency of mechanical classification machines is known to be insufficient. In this study, mechanical, electronic and software sections of the real-time image processing machine are explained. The system was composed of a belt conveyor, cameras and closed chamber to receive images, image processing and control computer and routing covers attached to servo motors. As a result of the experiments, carrot classification rates ranged from 80.14 to 100% in real-time image processing machine.
Konya ili Kasınhanı ilçesi, Türkiye'nin en büyük havuç üretimine sahiptir. 2017 yılında Konya ili havuç üretim alanlarının yaklaşık% 46.5'ine ve toplam üretimin% 59.7'sine sahiptir. Bölgede birkaç yıkama ve paketleme tesisi bulunmaktadır. Bu tesisler tamamen benzer özellikler sergilemekte vei bölgenin ihtiyaçlarını tam olarak karşılamaktadır. Yıkama havuzlarından gelen havuçlar önce mekanik sınıflandırma makinelerine, daha sonra paketleme bölümüne veya bazı tesislerde yıkamadan direk paketleme bölümüne gelir. Sınıflandırma ve paketleme işlemleri bu tesislerde elle yapılır. Mekanik sınıflandırma makinelerinin sınıflandırma verimliliğinin yetersiz olduğu bilinmektedir. Bu çalışmada, gerçek zamanlı görüntü işleme makinesinin mekanik, elektronik ve yazılım bölümleri açıklanmıştır. Sistem bir bant konveyörü, kameralar ve görüntüleri almak için kapalı odadan, görüntü işleme ve kontrol bilgisayarı ve servo motorlara bağlı yönlendirme kapaklarından oluşmuştur. Deneyler sonucunda, gerçek zamanlı görüntü işleme makinesinde havuç sınıflandırma oranları % 80.14 ile % 100 arasında değişmektedir. |
---|---|
ISSN: | 1308-7576 |
DOI: | 10.29133/yyutbd.685425 |