Enhancing Seizure Detection Accuracy in Wearable EEG Devices Using Deep Learning Algorithms

Wearable electroencephalography (EEG) devices for seizure detection accuracy and reliability are deep learning (DL) applications in the field of epilepsy diagnosis. In this study, we sought to increase the accuracy of seizure detection using advanced DL algorithms on the Children’s Hospital Boston -...

Full description

Saved in:
Bibliographic Details
Published inJournal of Disability Research Vol. 4; no. 4
Main Authors Alarfaj, Mohammed, Al-Adhaileh, Mosleh Hmoud, Uddin, M. Irfan, Adnan, Muhammad, Aldhyani, Theyazn H. H.
Format Journal Article
LanguageEnglish
Published 04.08.2025
Online AccessGet full text

Cover

Loading…
More Information
Summary:Wearable electroencephalography (EEG) devices for seizure detection accuracy and reliability are deep learning (DL) applications in the field of epilepsy diagnosis. In this study, we sought to increase the accuracy of seizure detection using advanced DL algorithms on the Children’s Hospital Boston - Massachusetts Institute of Technology (CHB-MIT) EEG database. First, a fully convolutional network (FCN) was trained and assessed using accuracy and recall/precision metrics, and the early stopping technique was used to avoid overfitting. To assess the performance, the FCN was evaluated in terms of various metrics, including accuracy, precision, recall, F1-score, and receiver operating characteristic (ROC)-area under the curve (AUC). In addition, two-dimensional (2D) convolutional neural networks (CNNs) and long short-term memory (LSTM) models were used to model the database, and their performance was thoroughly measured using different metrics, graphs, and confusion matrices. Using LSTM variants, such as standard LSTM, bidirectional LSTM, stacked LSTM, and LSTM attention mechanisms, hybrid convolutional LSTM (ConvLSTM) models were trained and compared. The comparison was conducted based on the training and validation accuracy and loss, as well as the graphs resulting from the precision–recall curves. Apart from DL approaches, EEG signal analysis using time–frequency techniques, such as wavelet transform and short-time Fourier transform, has also been investigated. These methods assisted in the analysis of the time–frequency features of EEG signals in combination with DL models. This study demonstrates that the performance of wearable EEG devices can be augmented using a combination of DL and seizure signal processing techniques. The FCN achieved an accuracy of 92%, with a recall for seizures of 33%, an F1-score of 0.03, and strong ROC-AUC results. The 2D CNN achieved 96% accuracy, a seizure recall of 70%, an F1-score of 0.12, and an ROC-AUC score of 78%. The baseline LSTM struggled with effectiveness at 53% accuracy with a seizure recall of 18%. In contrast, the LSTM model, which incorporated synthetic minority oversampling technique (SMOTE) balancing, was able to reach improvements of up to 89% accuracy, with a precision of 91%, a recall of 86%, an F1-score of 0.89, and a strong ROC curve performance. Among the models, the LSTM with SMOTE was the best performer, with 89% accuracy, 91% precision, 86% recall, and an F1-score of 0.89. These results provide evidence that applying techniques for data balancing in combination with certain DL network architectures significantly improves the detection of seizures using wearable EEG devices worn on the body. We believe that real-time monitoring and high-performance systems are feasible using optimized DL frameworks. The analysis of the performance of different models allows for the understanding of the possibilities of optimizing the architectures of DL algorithms for the modern diagnosis of epilepsy in real time. The source code used to carry out the experiments is publicly available at CHB-MIT EEG Dataset Python Scripts ( https://www.kaggle.com/code/adnankust/adnaneeg1 ).
ISSN:1658-9912
2676-2633
DOI:10.57197/JDR-2025-0590