An In Vitro Comparison of Shear Bond Strength for Heated Composite Resin With Three Conventional Luting Cements
Background: This research set out to collate and contrast three popular luting agents-heated composite resin, resin-modified glass ionomer cement (RMGIC), and resin cement, and light-cure resin cement by measuring their shear bond strengths. Shear bond strength was measured between lithium disilicat...
Saved in:
Published in | Curēus (Palo Alto, CA) Vol. 15; no. 10; p. e47110 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
16.10.2023
|
Online Access | Get full text |
Cover
Loading…
Summary: | Background: This research set out to collate and contrast three popular luting agents-heated composite resin, resin-modified glass ionomer cement (RMGIC), and resin cement, and light-cure resin cement by measuring their shear bond strengths. Shear bond strength was measured between lithium disilicate discs (IPS E-max) and specimens luted with heated composite resin (Tetric N-Ceram, Ivoclar Vivadent), self-adhesive resin cement (3M ESPE Rely X U200), light-activated resin cement (Rely X Veneer cement), and resin-modified glass ionomer cement (Fuji Plus, GC America). A comparison was made between the shear bond strength of standard luting cement and heated composite resin on lithium disilicate discs.MATERIALS AND METHODSForty-eight lithium disilicate disc samples are collected and put on acrylic blocks for this investigation. To improve luting cement adhesion, the discs are etched with 5% hydrofluoric acid (HF) gel. For easier handling and lower viscosity during luting, the composite resin is heated to between 55 and 68°C on a digital wax melter. Shear bond strength tests were executed with the universal testing device after the following luting cement was applied in the center of the test specimen (lithium disilicate discs). Statistics software was used for the calculations and analysis.RESULTSIn accordance with the findings of the tests, shear bond strengths ranged from 2.2851 ± 0.5901 for nanohybrid composite resin to 7.3740 ± 0.6969 for self-adhesive resin cement and 4.4647 ± 0.9774 for light-activated resin cement. A statistically significant (p≤0.001) difference between the groups was found. Mean shear bond strength was significantly highest in the self-adhesive resin cement group, followed by the light-activated resin cement group, resin-modified GIC, and least with the nanohybrid composite resin group.CONCLUSIONComposite resins; in fixation of indirect restorations can have their viscosity reduced by preheating in a device, but they must be employed as soon as possible after removal. Standardizing the methods of heating composite resins for cementation is necessary to achieve desirable outcomes and direct the physician in their application. Although preheating composite resins for luting operations can be utilized to decrease the material's viscosity and enhance the restoration setting; it may not increase bond strength. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 2168-8184 2168-8184 |
DOI: | 10.7759/cureus.47110 |