Ayrık Dalgacık Dönüşümü Bileşenlerine Ait İstatistiksel Veriler ile Epileptik EEG İşaretlerinin Sınıflandırılması
Beynin elektriksel aktivitesindeki anormal değişimden kaynaklanan epilepsi hastalığının teşhisinde EEG işaretlerinin analizi ve sınıflandırılması oldukça önemlidir. Bu çalışmada durağan olmayan EEG işaretlerinin spektral analizinde başarılı sonuçlar elde ettiği bilinen ayrık dalgacık dönüşümü kullan...
Saved in:
Published in | Academic Journal of Information Technology Vol. 5; no. 15; pp. 49 - 56 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Istanbul
AJIT - e: Online Academic Journal of Information Technology
01.04.2014
Akademik Bilişim Araştırmaları Derneği |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Beynin elektriksel aktivitesindeki anormal değişimden kaynaklanan epilepsi hastalığının teşhisinde EEG işaretlerinin analizi ve sınıflandırılması oldukça önemlidir. Bu çalışmada durağan olmayan EEG işaretlerinin spektral analizinde başarılı sonuçlar elde ettiği bilinen ayrık dalgacık dönüşümü kullanılarak dalgacık katsayılar elde edilmiştir. Bu katsayılara ait en küçük değer, en büyük değer, standart sapma ve ortalamadan oluşan özellik vektörleri belirlenmiş ve model oluşturmadan sınıflandırma işlemi yaptığı için kısa sürede sonuç elde edebilen k en yakın komşuluk kNN algoritması ile de sınıflandırma işlemi gerçekleştirilmiştir. Yöntem 60 dakikalık 256 Hz örnekleme frekansına sahip nöbet ve nöbet dışı veriler ile test edilmiştir. Bu verilerin uzman doktor tarafından işaretlenmiş segmentlerinden 110 saniyelik nöbet verisi ve 110 saniyelik nöbet dışı veri %50 oranında örtüşme ile alınmış ve analiz için kullanılacak veri setleri oluşturulmuştur. İndirgenmiş vektörlerin kNN algoritması ile sınıflandırılması sonucunda nöbet ve nöbet dışı verinin doğru sınıflandırma başarısı % 83’e ulaşmıştır. |
---|---|
ISSN: | 1309-1581 1309-1581 |
DOI: | 10.5824/1309-1581.2014.2.003.x |