Proteases Essential for Human Influenza Virus Entry into Cells and Their Inhibitors as Potential Therapeutic Agents

Influenza A virus (IAV) is one of the most common infectious pathogens in humans. Since IVA genome does not have the processing protease for the viral membrane fusion glycoprotein precursors, entry of this virus into cells is determined primarily by host cellular, trypsin-type, processing proteases...

Full description

Saved in:
Bibliographic Details
Published inCurrent pharmaceutical design Vol. 13; no. 3; pp. 403 - 412
Main Authors Kido, Hiroshi, Okumura, Yuushi, Yamada, Hiroshi, Quang Le, Trong, Yano, Mihiro
Format Journal Article
LanguageEnglish
Published Schiphol Bentham Science Publishers Ltd 01.01.2007
Online AccessGet full text

Cover

Loading…
More Information
Summary:Influenza A virus (IAV) is one of the most common infectious pathogens in humans. Since IVA genome does not have the processing protease for the viral membrane fusion glycoprotein precursors, entry of this virus into cells is determined primarily by host cellular, trypsin-type, processing proteases that proteolytically activate the fusion glycoprotein precursors of IAV. At least five different processing proteases have been identified in the airways of animals and humans. These proteases determine the infectious organ tropism of IAV infection as well as the efficiency of viral multiplication in the airway, and sometimes in the brain. Proteases in the upper respiratory tract are suppressed by secretory leukoprotease inhibitor, and those in the lower respiratory tract are suppressed by pulmonary surfactant which, by adsorption, inhibits the interaction between the proteases and viral membrane proteins. Since protease activities predominate over those of endogenous inhibitory compounds under normal airway conditions, administration of protease inhibitors in the early-stage of infection significantly suppresses viral entry and viral multiplication. Several viral neuraminidase inhibitors are used clinically as anti-influenza virus agents, based on their inhibitory action on viral release from infected cells. Furthermore, protease inhibitors of viral entry could be potentially useful against influenza virus as well as neuraminidase inhibitor-resistant viruses. We also found that ambroxol, a mucolytic and anti-oxidant agent, up-regulates the levels of endogenous protease inhibitory compounds in the airway fluids in early-phase infection, and that clarithromycin, a macrolide antibiotic, increases IgA levels and mucosal immunity through augmentation of interleukin-12 levels in the airway. The combination of neuraminidase inhibitors and protease inhibitors, clarithromycin or ambroxol, could be potentially used as a potent anti-influenza therapy to minimize the emergence of drug-resistant mutant viruses.
ISSN:1381-6128
1873-4286
DOI:10.2174/138161207779313533