Improved Field Size Bounds for Higher Order MDS Codes

Higher order MDS codes are an interesting generalization of MDS codes recently introduced by Brakensiek et al., (2023). In later works, they were shown to be intimately connected to optimally list-decodable codes and maximally recoverable tensor codes. Therefore (explicit) constructions of higher or...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on information theory Vol. 70; no. 10; pp. 6950 - 6960
Main Authors Brakensiek, Joshua, Dhar, Manik, Gopi, Sivakanth
Format Journal Article
LanguageEnglish
Published IEEE 01.10.2024
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Higher order MDS codes are an interesting generalization of MDS codes recently introduced by Brakensiek et al., (2023). In later works, they were shown to be intimately connected to optimally list-decodable codes and maximally recoverable tensor codes. Therefore (explicit) constructions of higher order MDS codes over small fields is an important open problem. Higher order MDS codes are denoted by <inline-formula> <tex-math notation="LaTeX">\rm {MDS}(\ell) </tex-math></inline-formula> where <inline-formula> <tex-math notation="LaTeX">\ell </tex-math></inline-formula> denotes the order of generality, <inline-formula> <tex-math notation="LaTeX">\rm {MDS}(2) </tex-math></inline-formula> codes are equivalent to the usual MDS codes. The best prior lower bound on the field size of an <inline-formula> <tex-math notation="LaTeX">{[}n,k{]} </tex-math></inline-formula>-<inline-formula> <tex-math notation="LaTeX">\rm {MDS}(\ell) </tex-math></inline-formula> codes is <inline-formula> <tex-math notation="LaTeX">\Omega _{\ell } (n^{\ell -1}) </tex-math></inline-formula>, whereas the best known (non-explicit) upper bound is <inline-formula> <tex-math notation="LaTeX">O_{\ell } (n^{k(\ell -1)}) </tex-math></inline-formula> which is exponential in the dimension. In this work, we nearly close this exponential gap between upper and lower bounds. We show that an <inline-formula> <tex-math notation="LaTeX">{[}n,k{]} </tex-math></inline-formula>-<inline-formula> <tex-math notation="LaTeX">\rm {MDS}(3) </tex-math></inline-formula> codes requires a field of size <inline-formula> <tex-math notation="LaTeX">\Omega _{k}(n^{k-1}) </tex-math></inline-formula>, which is close to the known upper bound. Using the connection between higher order MDS codes and optimally list-decodable codes, we show that even for a list size of 2, a code which meets the optimal list-decoding Singleton bound requires exponential field size; this resolves an open question by Shangguan and Tamo, (2020). We also give explicit constructions of <inline-formula> <tex-math notation="LaTeX">{[}n,k{]} </tex-math></inline-formula>-<inline-formula> <tex-math notation="LaTeX">\rm {MDS}(\ell) </tex-math></inline-formula> code over fields of size <inline-formula> <tex-math notation="LaTeX">n^{(\ell k)^{O(\ell k)}} </tex-math></inline-formula>. The smallest non-trivial case where we still do not have optimal constructions is <inline-formula> <tex-math notation="LaTeX">{[}n,3{]} </tex-math></inline-formula>-<inline-formula> <tex-math notation="LaTeX">\rm {MDS}(3) </tex-math></inline-formula>. In this case, the known lower bound on the field size is <inline-formula> <tex-math notation="LaTeX">\Omega (n^{2}) </tex-math></inline-formula> and the best known upper bounds are <inline-formula> <tex-math notation="LaTeX">O(n^{5}) </tex-math></inline-formula> for a non-explicit construction and <inline-formula> <tex-math notation="LaTeX">O(n^{32}) </tex-math></inline-formula> for an explicit construction. In this paper, we give an explicit construction over fields of size <inline-formula> <tex-math notation="LaTeX">O(n^{3}) </tex-math></inline-formula> which comes very close to being optimal.
ISSN:0018-9448
1557-9654
DOI:10.1109/TIT.2024.3449030