Photoreversibility of Fruiting and Growth in Oriental Melon (Cucumis melo L.)

BACKGROUND: Photoreversibility, a reversion of the inductive effect of a brief red light pulse by a subsequent far red light pulse, is a property of photo responses regulated by the plant photoreceptor phytochrome B. Plants use photoreceptors to sense photo signal and to adapt and modify their morph...

Full description

Saved in:
Bibliographic Details
Published inHanguk hwangyeong nonghak hoeji Vol. 39; no. 4; pp. 312 - 318
Main Authors Hong, Sung-Chang, Kim, Jin-Ho, Yeob, So-Jin, Kim, Min-Wook, Song, Sae-Nun, Lee, Gyu-Hyun, Kim, Kyeong-Sik, Yu, Seon-Young
Format Journal Article
LanguageEnglish
Published 한국환경농학회 31.12.2020
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:BACKGROUND: Photoreversibility, a reversion of the inductive effect of a brief red light pulse by a subsequent far red light pulse, is a property of photo responses regulated by the plant photoreceptor phytochrome B. Plants use photoreceptors to sense photo signal and to adapt and modify their morphological and physiological properties. Phytochrome recognizes red light and far red light and plays an important role in regulating plant growth and development. METHODS AND RESULTS: The reversal responses of growth and fruiting characteristics were investigated to increase the yield of oriental melon (Cucumis Melo L. var. Kumsargakieuncheon) by means of controlling light quality in a plastic house. Red (R:660nm) and far red (FR:730nm) lights were subsequently irradiated on the whole stems and leaves of the oriental melon plant during growing periods, using red and far red LEDs as light sources, from 9:00 PM daily for 15 minutes. The intensities of R and FR light were 0.322-0.430 μmol m-2s-1 and 0.250-0.366 μmol m-2s-1, respectively. Compared to R light irradiation, combination of R and FR light irradiation increased the length of internode, number of axillary stems, number of female flowers, and fruit number of oriental melons. The results of treatment with R were similar to R-FR-R light irradiation in terms of length of internode, number of axillary stems, number of female flowers, and number of fruits. When FR treatment was considered, R-FR and R-FR-R-FR light irradiation had similarities in responses. These reversal responses revealed that oriental melon showed a photoreversibility of growth characteristics, flowering, and fruiting. CONCLUSION: These results suggested the possibility of phytochrome regulation of female flower formation and fruiting in oriental melon. The fruit weight of the oriental melon was the heaviest with the R light irradiation, while the number of fruits was the highest with the FR light. With the FR light irradiation, the fruit weight was not significantly higher compared to that of the control. Meanwhile, the yield of oriental melon fruits increased by 28-36% according to the intensities of the FR light due to the increases of the number of fruits. KCI Citation Count: 0
Bibliography:www.korseaj.org
ISSN:1225-3537
2233-4173
DOI:10.5338/KJEA.2020.39.4.37