Co-analysis of methylation platforms for signatures of biological aging in the domestic dog reveals previously unexplored confounding factors

Chronological age reveals the number of years an individual has lived since birth. By contrast, biological age varies between individuals of the same chronological age at a rate reflective of physiological decline. Differing rates of physiological decline are related to longevity and result from gen...

Full description

Saved in:
Bibliographic Details
Published inAging (Albany, NY.) Vol. 16; no. 13; pp. 10724 - 10748
Main Authors Armero, Aitor Serres, Buckley, Reuben M, Mboning, Lajoyce, Spatola, Gabriella J, Horvath, Steve, Pellegrini, Matteo, Ostrander, Elaine A
Format Journal Article
LanguageEnglish
Published United States Impact Journals 09.07.2024
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Chronological age reveals the number of years an individual has lived since birth. By contrast, biological age varies between individuals of the same chronological age at a rate reflective of physiological decline. Differing rates of physiological decline are related to longevity and result from genetics, environment, behavior, and disease. The creation of methylation biological age predictors is a long-standing challenge in aging research due to the lack of individual longevity data. The consistent differences in longevity between domestic dog breeds enable the construction of biological age estimators which can, in turn, be contrasted with methylation measurements to elucidate mechanisms of biological aging. We draw on three flagship methylation studies using distinct measurement platforms and tissues to assess the feasibility of creating biological age methylation clocks in the dog. We expand epigenetic clock building strategies to accommodate phylogenetic relationships between individuals, thus controlling for the use of breed standard metrics. We observe that biological age methylation clocks are affected by population stratification and require heavy parameterization to achieve effective predictions. Finally, we observe that methylation-related markers reflecting biological age signals are rare and do not colocalize between datasets.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1945-4589
1945-4589
DOI:10.18632/aging.206012